Effective and Efficient Line Segment Detection for Visual Measurement Guided by Level Lines

Line segment detection is the basis for various visual measurement tasks. Numerous methods have been proposed to detect line segments from images, and edge-fitting-based ones have gained significant attention because of their remarkable detection efficiency. However, most edge-fitting-based methods...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 72; s. 1 - 12
Hlavní autoři: Lin, Xinyu, Zhou, Yingjie, Liu, Yipeng, Zhu, Ce
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Line segment detection is the basis for various visual measurement tasks. Numerous methods have been proposed to detect line segments from images, and edge-fitting-based ones have gained significant attention because of their remarkable detection efficiency. However, most edge-fitting-based methods primarily rely on gradient magnitude for edge detection and edge coordinates for line segment fitting, neglecting the importance of considering gradient orientation, which may reduce their effectiveness. In addition, most of them require the least squares for line segment fitting, involving the computationally inefficient squaring operation. To solve the above issues, this study proposes an effective and efficient line segment detection (E2LSD) algorithm based on two new findings regarding the level line of edge points, i.e., the unit vector orthogonal to the corresponding gradient orientation. 1) Utilizing double consistent constraints of both coordinates and level lines of edge points to fit line segments results in a more effective line segment detection than those relying on a single consistent constraint of coordinates. 2) Decoupling line segment orientation and position, followed by fitting them separately using level lines and coordinates of edge points, results in a computationally efficient line segment detection approach. It is more computationally efficient than those directly fitting line segments in the least squares sense based on the coordinates of edge points. In the E2LSD algorithm, edges are drawn with the guideline of level lines to improve accuracy. Numerical experiments based on natural and synthetic datasets showed that the E2LSD algorithm outperforms existing state-of-the-art (SOTA) methods regarding both effectiveness and computational efficiency. The E2LSD algorithm has also successfully been employed in a visual measurement system regarding feature-based visual localization. The code of the E2LSD algorithm will be publicly available at https://github.com/roylin1229/E2LSD .
AbstractList Line segment detection is the basis for various visual measurement tasks. Numerous methods have been proposed to detect line segments from images, and edge-fitting-based ones have gained significant attention because of their remarkable detection efficiency. However, most edge-fitting-based methods primarily rely on gradient magnitude for edge detection and edge coordinates for line segment fitting, neglecting the importance of considering gradient orientation, which may reduce their effectiveness. In addition, most of them require the least squares for line segment fitting, involving the computationally inefficient squaring operation. To solve the above issues, this study proposes an effective and efficient line segment detection (E2LSD) algorithm based on two new findings regarding the level line of edge points, i.e., the unit vector orthogonal to the corresponding gradient orientation. 1) Utilizing double consistent constraints of both coordinates and level lines of edge points to fit line segments results in a more effective line segment detection than those relying on a single consistent constraint of coordinates. 2) Decoupling line segment orientation and position, followed by fitting them separately using level lines and coordinates of edge points, results in a computationally efficient line segment detection approach. It is more computationally efficient than those directly fitting line segments in the least squares sense based on the coordinates of edge points. In the E2LSD algorithm, edges are drawn with the guideline of level lines to improve accuracy. Numerical experiments based on natural and synthetic datasets showed that the E2LSD algorithm outperforms existing state-of-the-art (SOTA) methods regarding both effectiveness and computational efficiency. The E2LSD algorithm has also successfully been employed in a visual measurement system regarding feature-based visual localization. The code of the E2LSD algorithm will be publicly available at https://github.com/roylin1229/E2LSD .
Author Zhou, Yingjie
Lin, Xinyu
Zhu, Ce
Liu, Yipeng
Author_xml – sequence: 1
  givenname: Xinyu
  orcidid: 0000-0003-0304-8993
  surname: Lin
  fullname: Lin, Xinyu
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 2
  givenname: Yingjie
  orcidid: 0000-0002-1129-0213
  surname: Zhou
  fullname: Zhou, Yingjie
  organization: College of Computer Science, Sichuan University, Chengdu, China
– sequence: 3
  givenname: Yipeng
  orcidid: 0000-0003-2084-8781
  surname: Liu
  fullname: Liu, Yipeng
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 4
  givenname: Ce
  orcidid: 0000-0001-7607-707X
  surname: Zhu
  fullname: Zhu, Ce
  email: eczhu@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
BookMark eNp9kDFPwzAQRi1UJNrCzsBgiTnFZ6dxPKJSSqVWDBQWhshxzshVmxQ7qdR_T9J2QAxMp0967073DUivrEok5BbYCICph9V8OeKMi5EQPGUqviB9GI9lpJKE90ifMUgjFY-TKzIIYc0Yk0ks--Rzai2a2u2R6rKgbXLGYVnThSuRvuHXtgtPWHdQVVJbefrhQqM3dIk6NB6PwKxxBRY0P9AF7nFztMM1ubR6E_DmPIfk_Xm6mrxEi9fZfPK4iAxXvI6KgkuluTYScgmKpSBzSLEAi1zysbG2iE2slIZcSZ3YPGapNDYFwQtEzcSQ3J_27nz13WCos3XV-LI9mfFUMQAhWNJSyYkyvgrBo82Mq3X3VO2122TAsq7IrC0y64rMzkW2Ivsj7rzban_4T7k7KQ4Rf-ECIAYufgBvAoAV
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2025_3564017
crossref_primary_10_3390_electronics13122246
crossref_primary_10_1016_j_energy_2024_130492
crossref_primary_10_1016_j_rcim_2024_102840
crossref_primary_10_1016_j_displa_2024_102892
crossref_primary_10_1109_TRO_2025_3562440
crossref_primary_10_1109_TIM_2024_3436114
crossref_primary_10_1007_s10489_024_05761_y
crossref_primary_10_3390_sym16121581
crossref_primary_10_1007_s11760_025_04339_6
crossref_primary_10_1016_j_engappai_2025_112103
crossref_primary_10_1016_j_jmr_2023_107553
crossref_primary_10_1016_j_sigpro_2025_109950
crossref_primary_10_1088_2631_8695_ad4d41
crossref_primary_10_1016_j_compeleceng_2025_110134
crossref_primary_10_1016_j_rcim_2024_102767
crossref_primary_10_1016_j_engappai_2025_111833
crossref_primary_10_1016_j_eswa_2025_127574
crossref_primary_10_1016_j_measurement_2025_116779
crossref_primary_10_1038_s41598_024_71989_w
crossref_primary_10_3390_en18030746
crossref_primary_10_1109_TIM_2024_3451580
crossref_primary_10_1016_j_epsr_2025_111604
crossref_primary_10_1109_TPAMI_2024_3400881
crossref_primary_10_1016_j_epsr_2023_110096
crossref_primary_10_1016_j_ress_2024_110190
crossref_primary_10_1016_j_ress_2025_111183
crossref_primary_10_1007_s13198_024_02503_8
crossref_primary_10_1016_j_heliyon_2024_e27399
crossref_primary_10_3390_s24113408
crossref_primary_10_1016_j_cie_2025_111531
crossref_primary_10_1007_s10846_025_02264_x
crossref_primary_10_1109_JSTARS_2025_3560306
crossref_primary_10_1016_j_measurement_2025_117176
crossref_primary_10_1109_TIM_2024_3460882
Cites_doi 10.1109/ICIP.2015.7350850
10.1007/s11263-005-3848-x
10.1109/LSP.2017.2724851
10.1016/j.patcog.2014.08.027
10.1109/TPAMI.2017.2703841
10.1109/CVPR52729.2023.01662
10.1109/ICRA.2014.6907675
10.1007/978-3-030-58542-6_20
10.1016/j.patcog.2022.108619
10.1109/IST50367.2021.9651397
10.1109/QoMEX.2019.8743252
10.1016/j.jvcir.2012.05.004
10.1016/j.patcog.2015.06.008
10.1109/ICCV.2019.00105
10.1016/j.patrec.2011.06.001
10.1109/TIM.2021.3107058
10.1006/cviu.1999.0831
10.1109/TPAMI.2016.2558150
10.1109/TPAMI.2005.188
10.1109/CVPR.2016.445
10.1109/TCSII.2023.3244990
10.1109/tiv.2022.3192102
10.1109/TIP.2014.2387020
10.1109/LSP.2023.3295332
10.1109/tpami.2019.2915233
10.1109/ACCESS.2020.2977119
10.1609/aaai.v36i1.19953
10.1007/s11042-017-5606-9
10.1109/ICASSP49357.2023.10096818
10.1177/0278364920961451
10.1109/IROS.2018.8594434
10.1117/12.2587167
10.1109/TPAMI.2008.300
10.1109/CVPR.2017.620
10.1109/MMSP55362.2022.9949610
10.1109/IROS55552.2023.10342185
10.1109/TMM.2008.2001384
10.1109/TIM.2020.2999137
10.1109/TRO.2021.3085487
10.1145/361237.361242
10.1016/j.neucom.2022.07.026
10.1109/TIM.2019.2941359
10.1109/CVPR46437.2021.01121
10.1109/TIM.2022.3198724
10.1109/TIM.2022.3165794
10.5220/0005268904110418
10.1109/JIOT.2018.2812300
10.1109/TIM.2022.3170980
10.1109/ACCESS.2022.3169177
10.1109/TIM.2023.3273211
10.1109/ICASSP49357.2023.10096791
10.1109/CVPR.2018.00072
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3328094
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID 10_1109_TIM_2023_3328094
10311412
Genre orig-research
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  grantid: 2023NSFSC1965
  funderid: 10.13039/100012542
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: U19A2052; 62020106011; 62171088; 62171302
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-dd279a2ac71b7190817b18ed1fe2725cffd4c499a1b97a6fb4087cf8132deea03
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001111852400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 08:30:08 EDT 2025
Tue Nov 18 22:34:17 EST 2025
Sat Nov 29 04:38:41 EST 2025
Wed Aug 27 02:37:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-dd279a2ac71b7190817b18ed1fe2725cffd4c499a1b97a6fb4087cf8132deea03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7607-707X
0000-0003-0304-8993
0000-0003-2084-8781
0000-0002-1129-0213
PQID 2890113306
PQPubID 85462
PageCount 12
ParticipantIDs ieee_primary_10311412
crossref_citationtrail_10_1109_TIM_2023_3328094
crossref_primary_10_1109_TIM_2023_3328094
proquest_journals_2890113306
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Lin (ref11) 2023
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
Hough (ref39) 1962
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref20
  doi: 10.1109/ICIP.2015.7350850
– ident: ref45
  doi: 10.1007/s11263-005-3848-x
– ident: ref41
  doi: 10.1109/LSP.2017.2724851
– ident: ref38
  doi: 10.1016/j.patcog.2014.08.027
– ident: ref23
  doi: 10.1109/TPAMI.2017.2703841
– ident: ref35
  doi: 10.1109/CVPR52729.2023.01662
– ident: ref19
  doi: 10.1109/ICRA.2014.6907675
– ident: ref32
  doi: 10.1007/978-3-030-58542-6_20
– ident: ref12
  doi: 10.1016/j.patcog.2022.108619
– ident: ref21
  doi: 10.1109/IST50367.2021.9651397
– ident: ref47
  doi: 10.1109/QoMEX.2019.8743252
– ident: ref36
  doi: 10.1016/j.jvcir.2012.05.004
– ident: ref15
  doi: 10.1016/j.patcog.2015.06.008
– ident: ref28
  doi: 10.1109/ICCV.2019.00105
– ident: ref18
  doi: 10.1016/j.patrec.2011.06.001
– ident: ref8
  doi: 10.1109/TIM.2021.3107058
– ident: ref14
  doi: 10.1006/cviu.1999.0831
– ident: ref22
  doi: 10.1109/TPAMI.2016.2558150
– ident: ref48
  doi: 10.1109/TPAMI.2005.188
– ident: ref50
  doi: 10.1109/CVPR.2016.445
– ident: ref52
  doi: 10.1109/TCSII.2023.3244990
– ident: ref54
  doi: 10.1109/tiv.2022.3192102
– ident: ref16
  doi: 10.1109/TIP.2014.2387020
– ident: ref43
  doi: 10.1109/LSP.2023.3295332
– ident: ref46
  doi: 10.1109/tpami.2019.2915233
– ident: ref25
  doi: 10.1109/ACCESS.2020.2977119
– ident: ref27
  doi: 10.1609/aaai.v36i1.19953
– ident: ref42
  doi: 10.1007/s11042-017-5606-9
– ident: ref37
  doi: 10.1109/ICASSP49357.2023.10096818
– ident: ref49
  doi: 10.1177/0278364920961451
– ident: ref24
  doi: 10.1109/IROS.2018.8594434
– ident: ref33
  doi: 10.1117/12.2587167
– ident: ref1
  doi: 10.1109/TPAMI.2008.300
– ident: ref31
  doi: 10.1109/CVPR.2017.620
– ident: ref5
  doi: 10.1109/MMSP55362.2022.9949610
– volume-title: Method and means for recognizing complex patterns
  year: 1962
  ident: ref39
– ident: ref44
  doi: 10.1109/IROS55552.2023.10342185
– ident: ref40
  doi: 10.1109/TMM.2008.2001384
– ident: ref7
  doi: 10.1109/TIM.2020.2999137
– year: 2023
  ident: ref11
  article-title: A comprehensive review of image line segment detection and description: Taxonomies, comparisons, and challenges
  publication-title: arXiv:2305.00264
– ident: ref10
  doi: 10.1109/TRO.2021.3085487
– ident: ref13
  doi: 10.1145/361237.361242
– ident: ref29
  doi: 10.1016/j.neucom.2022.07.026
– ident: ref3
  doi: 10.1109/TIM.2019.2941359
– ident: ref30
  doi: 10.1109/CVPR46437.2021.01121
– ident: ref9
  doi: 10.1109/TIM.2022.3198724
– ident: ref2
  doi: 10.1109/TIM.2022.3165794
– ident: ref17
  doi: 10.5220/0005268904110418
– ident: ref53
  doi: 10.1109/JIOT.2018.2812300
– ident: ref6
  doi: 10.1109/TIM.2022.3170980
– ident: ref34
  doi: 10.1109/ACCESS.2022.3169177
– ident: ref51
  doi: 10.1109/TIM.2023.3273211
– ident: ref4
  doi: 10.1109/ICASSP49357.2023.10096791
– ident: ref26
  doi: 10.1109/CVPR.2018.00072
SSID ssj0007647
Score 2.4098938
Snippet Line segment detection is the basis for various visual measurement tasks. Numerous methods have been proposed to detect line segments from images, and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Computational efficiency
Decoupling
Edge detection
Effectiveness
Feature extraction
Image edge detection
Image segmentation
Least squares
level line
line segment detection
local feature
Location awareness
Orientation
Segments
Synthetic data
Task analysis
Training
visual measurement
Visual tasks
Visualization
Title Effective and Efficient Line Segment Detection for Visual Measurement Guided by Level Lines
URI https://ieeexplore.ieee.org/document/10311412
https://www.proquest.com/docview/2890113306
Volume 72
WOSCitedRecordID wos001111852400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86FPTgx1ScTsnBi4dubZo17VH8BjcEpwgeSj5eZSCdrJ3gf-9L2ulEFLz1kKQlvybv_fJe3o-Qo1BFknOJ3MQI5fFeFnkSLZ-XISKAHFfKUDuxCTEYxI-PyW19Wd3dhQEAl3wGHfvoYvlmrKf2qKxrJQkCbjWFF4WIqstan9uuiHhVIDPAFYxuwSwm6Sfd4XW_Y2XCO2HIYj_h32yQE1X5sRM783Kx_s8P2yBrtR9JTyrgN8kC5E2yOlddsEmWXXanLrbIU1WjGDc2KnNDz13ZCByRIhMFegfPdnh6BqXLy8opOrL0YVRM8QX9rzNEejkdGTBUvdMbm2rkehfb5P7ifHh65dWqCp5mCSs9Y5hIJJNaBEqgOxAHQgUxmCADJlhPZ5nhGnmQDFQiZJQp7sdCZzHSVgMg_XCHNPJxDruE9gwSNqF8LYXhETNKobOWodnF6TfATIt0Z_Oc6rrkuFW-eEkd9fCTFJFJLTJpjUyLHH_2eK3KbfzRdtsiMdeuAqFF2jMs03pBFqmNpwbIx_1o75du-2TFjl4dr7RJo5xM4YAs6bdyVEwO3b_2AWyX0LI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4hHoI98EZ0l4cPXDikTRw3To6r5SnaComCkDhEfkxQJRQQaZH23zN2UmC1AolbDn5E_mzPfPZ4PoCDWCdKCEXcxEodiG6RBIosX1AQIkgcV6nYeLEJORikt7fZZfNY3b-FQUQffIZt9-nv8u2jmbijso6TJIiE0xSec9JZzXOtt41XJqJOkRnRGibHYHorGWad4Xm_7YTC23HM0zAT_1ghL6vy317sDczJyjd_bRWWG0-S_a6hX4MZLNfhx4f8guuw4OM7TbUBd3WWYtramCotO_aJI6hFRlwU2RXeu-bZEY59ZFbJyJVlN6NqQh30308R2elkZNEy_Zf1XLCRr11twvXJ8fDPWdDoKgSGZ3wcWMtlprgyMtKSHII0kjpK0UYFcsm7piisMMSEVKQzqZJCizCVpkiJuFpEFcZbMFs-lrgNrGuJskkdGiWtSLjVmty1ggwvDb9FblvQmY5zbpqk40774iH35CPMckImd8jkDTItOHyr8VQn3Pii7KZD4kO5GoQW7EyxzJslWeXuRjUiRh4mPz-ptg-LZ8N-L--dDy5-wZLrqT5s2YHZ8fMEd2HevIxH1fOen3evdl_T-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+and+Efficient+Line+Segment+Detection+for+Visual+Measurement+Guided+by+Level+Lines&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Lin%2C+Xinyu&rft.au=Zhou%2C+Yingjie&rft.au=Liu%2C+Yipeng&rft.au=Zhu%2C+Ce&rft.date=2023&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=72&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2023.3328094&rft.externalDocID=10311412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon