Effective and Efficient Line Segment Detection for Visual Measurement Guided by Level Lines
Line segment detection is the basis for various visual measurement tasks. Numerous methods have been proposed to detect line segments from images, and edge-fitting-based ones have gained significant attention because of their remarkable detection efficiency. However, most edge-fitting-based methods...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on instrumentation and measurement Jg. 72; S. 1 - 12 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Line segment detection is the basis for various visual measurement tasks. Numerous methods have been proposed to detect line segments from images, and edge-fitting-based ones have gained significant attention because of their remarkable detection efficiency. However, most edge-fitting-based methods primarily rely on gradient magnitude for edge detection and edge coordinates for line segment fitting, neglecting the importance of considering gradient orientation, which may reduce their effectiveness. In addition, most of them require the least squares for line segment fitting, involving the computationally inefficient squaring operation. To solve the above issues, this study proposes an effective and efficient line segment detection (E2LSD) algorithm based on two new findings regarding the level line of edge points, i.e., the unit vector orthogonal to the corresponding gradient orientation. 1) Utilizing double consistent constraints of both coordinates and level lines of edge points to fit line segments results in a more effective line segment detection than those relying on a single consistent constraint of coordinates. 2) Decoupling line segment orientation and position, followed by fitting them separately using level lines and coordinates of edge points, results in a computationally efficient line segment detection approach. It is more computationally efficient than those directly fitting line segments in the least squares sense based on the coordinates of edge points. In the E2LSD algorithm, edges are drawn with the guideline of level lines to improve accuracy. Numerical experiments based on natural and synthetic datasets showed that the E2LSD algorithm outperforms existing state-of-the-art (SOTA) methods regarding both effectiveness and computational efficiency. The E2LSD algorithm has also successfully been employed in a visual measurement system regarding feature-based visual localization. The code of the E2LSD algorithm will be publicly available at https://github.com/roylin1229/E2LSD . |
|---|---|
| AbstractList | Line segment detection is the basis for various visual measurement tasks. Numerous methods have been proposed to detect line segments from images, and edge-fitting-based ones have gained significant attention because of their remarkable detection efficiency. However, most edge-fitting-based methods primarily rely on gradient magnitude for edge detection and edge coordinates for line segment fitting, neglecting the importance of considering gradient orientation, which may reduce their effectiveness. In addition, most of them require the least squares for line segment fitting, involving the computationally inefficient squaring operation. To solve the above issues, this study proposes an effective and efficient line segment detection (E2LSD) algorithm based on two new findings regarding the level line of edge points, i.e., the unit vector orthogonal to the corresponding gradient orientation. 1) Utilizing double consistent constraints of both coordinates and level lines of edge points to fit line segments results in a more effective line segment detection than those relying on a single consistent constraint of coordinates. 2) Decoupling line segment orientation and position, followed by fitting them separately using level lines and coordinates of edge points, results in a computationally efficient line segment detection approach. It is more computationally efficient than those directly fitting line segments in the least squares sense based on the coordinates of edge points. In the E2LSD algorithm, edges are drawn with the guideline of level lines to improve accuracy. Numerical experiments based on natural and synthetic datasets showed that the E2LSD algorithm outperforms existing state-of-the-art (SOTA) methods regarding both effectiveness and computational efficiency. The E2LSD algorithm has also successfully been employed in a visual measurement system regarding feature-based visual localization. The code of the E2LSD algorithm will be publicly available at https://github.com/roylin1229/E2LSD . |
| Author | Zhou, Yingjie Lin, Xinyu Zhu, Ce Liu, Yipeng |
| Author_xml | – sequence: 1 givenname: Xinyu orcidid: 0000-0003-0304-8993 surname: Lin fullname: Lin, Xinyu organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 2 givenname: Yingjie orcidid: 0000-0002-1129-0213 surname: Zhou fullname: Zhou, Yingjie organization: College of Computer Science, Sichuan University, Chengdu, China – sequence: 3 givenname: Yipeng orcidid: 0000-0003-2084-8781 surname: Liu fullname: Liu, Yipeng organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 4 givenname: Ce orcidid: 0000-0001-7607-707X surname: Zhu fullname: Zhu, Ce email: eczhu@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China |
| BookMark | eNp9kDFPwzAQRi1UJNrCzsBgiTnFZ6dxPKJSSqVWDBQWhshxzshVmxQ7qdR_T9J2QAxMp0967073DUivrEok5BbYCICph9V8OeKMi5EQPGUqviB9GI9lpJKE90ifMUgjFY-TKzIIYc0Yk0ks--Rzai2a2u2R6rKgbXLGYVnThSuRvuHXtgtPWHdQVVJbefrhQqM3dIk6NB6PwKxxBRY0P9AF7nFztMM1ubR6E_DmPIfk_Xm6mrxEi9fZfPK4iAxXvI6KgkuluTYScgmKpSBzSLEAi1zysbG2iE2slIZcSZ3YPGapNDYFwQtEzcSQ3J_27nz13WCos3XV-LI9mfFUMQAhWNJSyYkyvgrBo82Mq3X3VO2122TAsq7IrC0y64rMzkW2Ivsj7rzban_4T7k7KQ4Rf-ECIAYufgBvAoAV |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_TIM_2025_3564017 crossref_primary_10_3390_electronics13122246 crossref_primary_10_1016_j_energy_2024_130492 crossref_primary_10_1016_j_rcim_2024_102840 crossref_primary_10_1016_j_displa_2024_102892 crossref_primary_10_1109_TRO_2025_3562440 crossref_primary_10_1109_TIM_2024_3436114 crossref_primary_10_1007_s10489_024_05761_y crossref_primary_10_3390_sym16121581 crossref_primary_10_1007_s11760_025_04339_6 crossref_primary_10_1016_j_engappai_2025_112103 crossref_primary_10_1016_j_jmr_2023_107553 crossref_primary_10_1016_j_sigpro_2025_109950 crossref_primary_10_1088_2631_8695_ad4d41 crossref_primary_10_1016_j_compeleceng_2025_110134 crossref_primary_10_1016_j_rcim_2024_102767 crossref_primary_10_1016_j_engappai_2025_111833 crossref_primary_10_1016_j_eswa_2025_127574 crossref_primary_10_1016_j_measurement_2025_116779 crossref_primary_10_1038_s41598_024_71989_w crossref_primary_10_3390_en18030746 crossref_primary_10_1109_TIM_2024_3451580 crossref_primary_10_1016_j_epsr_2025_111604 crossref_primary_10_1109_TPAMI_2024_3400881 crossref_primary_10_1016_j_epsr_2023_110096 crossref_primary_10_1016_j_ress_2024_110190 crossref_primary_10_1016_j_ress_2025_111183 crossref_primary_10_1007_s13198_024_02503_8 crossref_primary_10_1016_j_heliyon_2024_e27399 crossref_primary_10_3390_s24113408 crossref_primary_10_1016_j_cie_2025_111531 crossref_primary_10_1007_s10846_025_02264_x crossref_primary_10_1109_JSTARS_2025_3560306 crossref_primary_10_1016_j_measurement_2025_117176 crossref_primary_10_1109_TIM_2024_3460882 |
| Cites_doi | 10.1109/ICIP.2015.7350850 10.1007/s11263-005-3848-x 10.1109/LSP.2017.2724851 10.1016/j.patcog.2014.08.027 10.1109/TPAMI.2017.2703841 10.1109/CVPR52729.2023.01662 10.1109/ICRA.2014.6907675 10.1007/978-3-030-58542-6_20 10.1016/j.patcog.2022.108619 10.1109/IST50367.2021.9651397 10.1109/QoMEX.2019.8743252 10.1016/j.jvcir.2012.05.004 10.1016/j.patcog.2015.06.008 10.1109/ICCV.2019.00105 10.1016/j.patrec.2011.06.001 10.1109/TIM.2021.3107058 10.1006/cviu.1999.0831 10.1109/TPAMI.2016.2558150 10.1109/TPAMI.2005.188 10.1109/CVPR.2016.445 10.1109/TCSII.2023.3244990 10.1109/tiv.2022.3192102 10.1109/TIP.2014.2387020 10.1109/LSP.2023.3295332 10.1109/tpami.2019.2915233 10.1109/ACCESS.2020.2977119 10.1609/aaai.v36i1.19953 10.1007/s11042-017-5606-9 10.1109/ICASSP49357.2023.10096818 10.1177/0278364920961451 10.1109/IROS.2018.8594434 10.1117/12.2587167 10.1109/TPAMI.2008.300 10.1109/CVPR.2017.620 10.1109/MMSP55362.2022.9949610 10.1109/IROS55552.2023.10342185 10.1109/TMM.2008.2001384 10.1109/TIM.2020.2999137 10.1109/TRO.2021.3085487 10.1145/361237.361242 10.1016/j.neucom.2022.07.026 10.1109/TIM.2019.2941359 10.1109/CVPR46437.2021.01121 10.1109/TIM.2022.3198724 10.1109/TIM.2022.3165794 10.5220/0005268904110418 10.1109/JIOT.2018.2812300 10.1109/TIM.2022.3170980 10.1109/ACCESS.2022.3169177 10.1109/TIM.2023.3273211 10.1109/ICASSP49357.2023.10096791 10.1109/CVPR.2018.00072 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2023.3328094 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TIM_2023_3328094 10311412 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Sichuan Science and Technology Program grantid: 2023NSFSC1965 funderid: 10.13039/100012542 – fundername: National Natural Science Foundation of China (NSFC) grantid: U19A2052; 62020106011; 62171088; 62171302 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-dd279a2ac71b7190817b18ed1fe2725cffd4c499a1b97a6fb4087cf8132deea03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001111852400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 08:30:08 EDT 2025 Tue Nov 18 22:34:17 EST 2025 Sat Nov 29 04:38:41 EST 2025 Wed Aug 27 02:37:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-dd279a2ac71b7190817b18ed1fe2725cffd4c499a1b97a6fb4087cf8132deea03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7607-707X 0000-0003-0304-8993 0000-0003-2084-8781 0000-0002-1129-0213 |
| PQID | 2890113306 |
| PQPubID | 85462 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10311412 crossref_citationtrail_10_1109_TIM_2023_3328094 crossref_primary_10_1109_TIM_2023_3328094 proquest_journals_2890113306 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Lin (ref11) 2023 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 Hough (ref39) 1962 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref20 doi: 10.1109/ICIP.2015.7350850 – ident: ref45 doi: 10.1007/s11263-005-3848-x – ident: ref41 doi: 10.1109/LSP.2017.2724851 – ident: ref38 doi: 10.1016/j.patcog.2014.08.027 – ident: ref23 doi: 10.1109/TPAMI.2017.2703841 – ident: ref35 doi: 10.1109/CVPR52729.2023.01662 – ident: ref19 doi: 10.1109/ICRA.2014.6907675 – ident: ref32 doi: 10.1007/978-3-030-58542-6_20 – ident: ref12 doi: 10.1016/j.patcog.2022.108619 – ident: ref21 doi: 10.1109/IST50367.2021.9651397 – ident: ref47 doi: 10.1109/QoMEX.2019.8743252 – ident: ref36 doi: 10.1016/j.jvcir.2012.05.004 – ident: ref15 doi: 10.1016/j.patcog.2015.06.008 – ident: ref28 doi: 10.1109/ICCV.2019.00105 – ident: ref18 doi: 10.1016/j.patrec.2011.06.001 – ident: ref8 doi: 10.1109/TIM.2021.3107058 – ident: ref14 doi: 10.1006/cviu.1999.0831 – ident: ref22 doi: 10.1109/TPAMI.2016.2558150 – ident: ref48 doi: 10.1109/TPAMI.2005.188 – ident: ref50 doi: 10.1109/CVPR.2016.445 – ident: ref52 doi: 10.1109/TCSII.2023.3244990 – ident: ref54 doi: 10.1109/tiv.2022.3192102 – ident: ref16 doi: 10.1109/TIP.2014.2387020 – ident: ref43 doi: 10.1109/LSP.2023.3295332 – ident: ref46 doi: 10.1109/tpami.2019.2915233 – ident: ref25 doi: 10.1109/ACCESS.2020.2977119 – ident: ref27 doi: 10.1609/aaai.v36i1.19953 – ident: ref42 doi: 10.1007/s11042-017-5606-9 – ident: ref37 doi: 10.1109/ICASSP49357.2023.10096818 – ident: ref49 doi: 10.1177/0278364920961451 – ident: ref24 doi: 10.1109/IROS.2018.8594434 – ident: ref33 doi: 10.1117/12.2587167 – ident: ref1 doi: 10.1109/TPAMI.2008.300 – ident: ref31 doi: 10.1109/CVPR.2017.620 – ident: ref5 doi: 10.1109/MMSP55362.2022.9949610 – volume-title: Method and means for recognizing complex patterns year: 1962 ident: ref39 – ident: ref44 doi: 10.1109/IROS55552.2023.10342185 – ident: ref40 doi: 10.1109/TMM.2008.2001384 – ident: ref7 doi: 10.1109/TIM.2020.2999137 – year: 2023 ident: ref11 article-title: A comprehensive review of image line segment detection and description: Taxonomies, comparisons, and challenges publication-title: arXiv:2305.00264 – ident: ref10 doi: 10.1109/TRO.2021.3085487 – ident: ref13 doi: 10.1145/361237.361242 – ident: ref29 doi: 10.1016/j.neucom.2022.07.026 – ident: ref3 doi: 10.1109/TIM.2019.2941359 – ident: ref30 doi: 10.1109/CVPR46437.2021.01121 – ident: ref9 doi: 10.1109/TIM.2022.3198724 – ident: ref2 doi: 10.1109/TIM.2022.3165794 – ident: ref17 doi: 10.5220/0005268904110418 – ident: ref53 doi: 10.1109/JIOT.2018.2812300 – ident: ref6 doi: 10.1109/TIM.2022.3170980 – ident: ref34 doi: 10.1109/ACCESS.2022.3169177 – ident: ref51 doi: 10.1109/TIM.2023.3273211 – ident: ref4 doi: 10.1109/ICASSP49357.2023.10096791 – ident: ref26 doi: 10.1109/CVPR.2018.00072 |
| SSID | ssj0007647 |
| Score | 2.409809 |
| Snippet | Line segment detection is the basis for various visual measurement tasks. Numerous methods have been proposed to detect line segments from images, and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Computational efficiency Decoupling Edge detection Effectiveness Feature extraction Image edge detection Image segmentation Least squares level line line segment detection local feature Location awareness Orientation Segments Synthetic data Task analysis Training visual measurement Visual tasks Visualization |
| Title | Effective and Efficient Line Segment Detection for Visual Measurement Guided by Level Lines |
| URI | https://ieeexplore.ieee.org/document/10311412 https://www.proquest.com/docview/2890113306 |
| Volume | 72 |
| WOSCitedRecordID | wos001111852400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qCnrwsSquL3Lw4qG7edkkR1FXBRXBVQQPpU0msiBV7K7gvzdJu7oiCt56SKalXzKZycx8g9AeJRwKw2RyoDQkIs11oqUuksDMrp1fJaSIPLMX8upK3d_r66ZYPdbCAEBMPoNOeIyxfPtsRuGqrBtaElARegpPS5nWxVqfalemoibIpH4He7NgHJMkuts_v-yENuEdzpkiWnw7g2JTlR-aOB4vvaV_ftgyWmzsSHxYA7-CpqBsoYUJdsEWmovZnaZaRQ81R7FXbDgvLT6JtBFeIvaeKOAbeAzi8TEMY15Wib0hi-8G1ci_4PLrDhGfjgYWLC7e8UVINYqzqzV02zvpH50lTVeFxDDNhom1TOqc5UbSQnpzQFFZUAWWOmCSHRjnrDDeD8ppoWWeukIQJY1T3m21ADnh62imfC5hA2FDrHI8F8JIIZyxinMB3JswwIwjwNuoO_7PmWkox0Pni6csuh5EZx6ZLCCTNci00f7njJeabuOPsWsBiYlxNQhttD3GMms2ZJWFeCr1_jhJN3-ZtoXmg_T6emUbzQxfR7CDZs3bcFC97sa19gFsus-0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4hoCocaEuDCKXUh1562MQvYvuIChREElVqipB6WO3aYxQJLYhNkPj32N4NBSEq9bYHv7SfHzOe8fcBfGVUYGm5yva1wUwOCpMZZcosMrMbH2YJLRPP7FCNx_riwvxsH6untzCImJLPsBc_UyzfXdt5vCrrR0kCJqOm8EqUzmqfaz1uvGogG4pMFtZwMAwWUUlq-pPTUS8KhfeE4Joa-ewUSrIqL_bidMAcv_vPob2HjdaSJAcN9B9gCatNWH_CL7gJb1J-p60_wp-GpThsbaSoHDlKxBGhRRJ8USS_8DI2Tw5xljKzKhJMWXI-reehg9HfW0TyYz516Eh5T4Yx2SjVrjvw-_ho8v0ka3UVMssNn2XOcWUKXljFShUMAs1UyTQ65pErvm-9d9IGT6hgpVHFwJeSamW9Do6rQyyo2ILl6rrCbSCWOu1FIaVVUnrrtBASRTBikFtPUXShv_jPuW1Jx6P2xVWenA9q8oBMHpHJW2S68O2xxk1DuPGPsp2IxJNyDQhd2F1gmbdLss5jRJUFj5wOdl6p9gXenkxGw3x4Oj77BGuxp-ayZReWZ7dz_Ayr9m42rW_30rx7AGle0v0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+and+Efficient+Line+Segment+Detection+for+Visual+Measurement+Guided+by+Level+Lines&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Lin%2C+Xinyu&rft.au=Zhou%2C+Yingjie&rft.au=Liu%2C+Yipeng&rft.au=Zhu%2C+Ce&rft.date=2023&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=72&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2023.3328094&rft.externalDocID=10311412 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |