CDDM: Channel Denoising Diffusion Models for Wireless Semantic Communications

Diffusion models (DM) can gradually learn to remove noise, which have been widely used in artificial intelligence generated content (AIGC) in recent years. The property of DM for eliminating noise leads us to wonder whether DM can be applied to wireless communications to help the receiver mitigate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications Jg. 23; H. 9; S. 11168 - 11183
Hauptverfasser: Wu, Tong, Chen, Zhiyong, He, Dazhi, Qian, Liang, Xu, Yin, Tao, Meixia, Zhang, Wenjun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1276, 1558-2248
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Diffusion models (DM) can gradually learn to remove noise, which have been widely used in artificial intelligence generated content (AIGC) in recent years. The property of DM for eliminating noise leads us to wonder whether DM can be applied to wireless communications to help the receiver mitigate the channel noise. To address this, we propose channel denoising diffusion models (CDDM) for semantic communications over wireless channels in this paper. CDDM can be applied as a new physical layer module after the channel equalization to learn the distribution of the channel input signal, and then utilizes this learned knowledge to remove the channel noise. We derive corresponding training and sampling algorithms of CDDM according to the forward diffusion process specially designed to adapt the channel models. We also theoretically prove that the well-trained CDDM can effectively reduce the conditional entropy of the received signal under small sampling steps. Moreover, we apply CDDM to a semantic communications system based on joint source-channel coding (JSCC) for image transmission and design a three-stage training algorithm for combining them. Extensive experimental results demonstrate that CDDM can further reduce the mean square error (MSE) after minimum mean square error (MMSE) equalizer, and the joint CDDM and JSCC system achieves better performance than the JSCC system, the traditional JPEG2000 with low-density parity-check (LDPC) code approach and other benchmarks in diverse scenarios.
AbstractList Diffusion models (DM) can gradually learn to remove noise, which have been widely used in artificial intelligence generated content (AIGC) in recent years. The property of DM for eliminating noise leads us to wonder whether DM can be applied to wireless communications to help the receiver mitigate the channel noise. To address this, we propose channel denoising diffusion models (CDDM) for semantic communications over wireless channels in this paper. CDDM can be applied as a new physical layer module after the channel equalization to learn the distribution of the channel input signal, and then utilizes this learned knowledge to remove the channel noise. We derive corresponding training and sampling algorithms of CDDM according to the forward diffusion process specially designed to adapt the channel models. We also theoretically prove that the well-trained CDDM can effectively reduce the conditional entropy of the received signal under small sampling steps. Moreover, we apply CDDM to a semantic communications system based on joint source-channel coding (JSCC) for image transmission and design a three-stage training algorithm for combining them. Extensive experimental results demonstrate that CDDM can further reduce the mean square error (MSE) after minimum mean square error (MMSE) equalizer, and the joint CDDM and JSCC system achieves better performance than the JSCC system, the traditional JPEG2000 with low-density parity-check (LDPC) code approach and other benchmarks in diverse scenarios.
Author He, Dazhi
Chen, Zhiyong
Wu, Tong
Xu, Yin
Qian, Liang
Zhang, Wenjun
Tao, Meixia
Author_xml – sequence: 1
  givenname: Tong
  surname: Wu
  fullname: Wu, Tong
  email: wu_tong@sjtu.edu.cn
  organization: Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Zhiyong
  orcidid: 0000-0003-3540-389X
  surname: Chen
  fullname: Chen, Zhiyong
  email: zhiyongchen@sjtu.edu.cn
  organization: Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Dazhi
  orcidid: 0000-0001-6637-0088
  surname: He
  fullname: He, Dazhi
  email: hedazhi@sjtu.edu.cn
  organization: Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Liang
  surname: Qian
  fullname: Qian, Liang
  email: lqian@sjtu.edu.cn
  organization: Shanghai Key Laboratory of Digital Media Processing and Transmission, Shanghai, China
– sequence: 5
  givenname: Yin
  orcidid: 0000-0003-4429-5982
  surname: Xu
  fullname: Xu, Yin
  email: xuyin@sjtu.edu.cn
  organization: Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China
– sequence: 6
  givenname: Meixia
  orcidid: 0000-0002-0799-0954
  surname: Tao
  fullname: Tao, Meixia
  email: mxtao@sjtu.edu.cn
  organization: Shanghai Key Laboratory of Digital Media Processing and Transmission, Shanghai, China
– sequence: 7
  givenname: Wenjun
  orcidid: 0000-0001-8799-1182
  surname: Zhang
  fullname: Zhang, Wenjun
  email: zhangwenjun@sjtu.edu.cn
  organization: Shanghai Key Laboratory of Digital Media Processing and Transmission, Shanghai, China
BookMark eNp9kDtPwzAURi1UJNrCzsAQiTnFrzzMhlJeUisGijparnMNrhK72MnAvyelHRAD073DOffxTdDIeQcIXRI8IwSLm9W6mlFM-YyxQlDOT9CYZFmZUsrL0b5neUpokZ-hSYxbjEmRZ9kYLav5fHmbVB_KOWiSOThvo3Xvydwa00frXbL0NTQxMT4kaxuggRiTV2iV66xOKt-2vbNadQMaz9GpUU2Ei2OdoreH-1X1lC5eHp-ru0WqqaBdWhdCb-pSiY3OTE1FjTNqCGwEMKKM4QXLNWVgOB9wVZYZBkWpgeEHrgjkbIquD3N3wX_2EDu59X1ww0rJCKai4KIgA5UfKB18jAGM1Lb7ObQLyjaSYLmPTg7RyX108hjdIOI_4i7YVoWv_5Srg2IB4BfOS8x4yb4BkTp7UA
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_LWC_2024_3515656
crossref_primary_10_1109_LWC_2025_3542811
crossref_primary_10_1109_LCOMM_2025_3571544
crossref_primary_10_1109_TWC_2024_3512652
crossref_primary_10_1016_j_eng_2025_06_018
crossref_primary_10_1016_j_eng_2025_07_022
crossref_primary_10_1109_JIOT_2025_3530462
crossref_primary_10_1109_TWC_2025_3556118
crossref_primary_10_1016_j_phycom_2025_102836
crossref_primary_10_1007_s40435_025_01849_6
crossref_primary_10_1109_TWC_2025_3543373
crossref_primary_10_1016_j_knosys_2025_114464
crossref_primary_10_1109_TWC_2025_3535714
crossref_primary_10_1109_JSAC_2025_3559160
crossref_primary_10_1109_TWC_2025_3543167
crossref_primary_10_1109_LWC_2024_3488859
crossref_primary_10_3390_s25010269
crossref_primary_10_1109_JIOT_2024_3496491
crossref_primary_10_1109_JSAC_2024_3460084
crossref_primary_10_1109_LWC_2024_3474570
crossref_primary_10_1109_TMC_2025_3558793
crossref_primary_10_1109_TCCN_2025_3567613
crossref_primary_10_3390_app15063210
crossref_primary_10_1109_TCCN_2025_3537103
crossref_primary_10_1109_TWC_2025_3553851
crossref_primary_10_1109_JSAC_2025_3559158
crossref_primary_10_1109_TCCN_2025_3531486
Cites_doi 10.1109/TCSVT.2021.3082521
10.1109/ICASSP49357.2023.10094735
10.1109/VTC2022-Fall57202.2022.10012860
10.1109/TCOMM.2018.2814603
10.1109/ICCV48922.2021.00986
10.1109/CVPR52729.2023.01770
10.1109/JSAC.2022.3180802
10.1007/978-3-319-24574-4_28
10.1109/JSAC.2023.3287547
10.1109/MSP.2010.938080
10.1109/GLOBECOM54140.2023.10436728
10.1109/TCCN.2019.2919300
10.1109/ICCV48922.2021.01410
10.1109/ACSSC.2003.1292216
10.1109/INFOCT.2019.8710893
10.1109/TIP.2017.2662206
10.1109/COMST.2022.3223224
10.1109/49.947033
10.1002/j.1538-7305.1948.tb01338.x
10.5244/C.30.87
10.48550/ARXIV.1706.03762
10.1109/CVPRW.2017.149
10.23919/JCIN.2021.9663101
10.1109/tcomm.2024.3386577
10.5555/2969033.2969125
10.1109/CACRE54574.2022.9834193
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2024.3379244
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 11183
ExternalDocumentID 10_1109_TWC_2024_3379244
10480348
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Project of China
  grantid: 2023YFB2906200
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: NSF of China
  grantid: 62222111; 62125108
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-d79cbd8a9bc5fd29d052f1eb9e31aff4736c23ef44292a8850ea22fe5364a1e63
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001312963400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 12:10:24 EDT 2025
Tue Nov 18 22:38:01 EST 2025
Sat Nov 29 06:24:00 EST 2025
Wed Aug 27 01:52:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-d79cbd8a9bc5fd29d052f1eb9e31aff4736c23ef44292a8850ea22fe5364a1e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3540-389X
0000-0001-8799-1182
0000-0002-0799-0954
0000-0001-6637-0088
0000-0003-4429-5982
PQID 3102974971
PQPubID 105736
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TWC_2024_3379244
ieee_primary_10480348
crossref_primary_10_1109_TWC_2024_3379244
proquest_journals_3102974971
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Loshchilov (ref49)
ref15
ref14
Rezende (ref12)
ref11
(ref45) 2008
Nichol (ref46); 139
ref18
Song (ref4)
Ho (ref3); 33
Zhu (ref17) 2023
Kingma (ref10)
Chen (ref22) 2023
Grassucci (ref24) 2023
ref42
Ajay (ref16)
ref41
ref44
Zheng (ref8) 2023
ref7
ref9
Yang (ref5) 2022
Yilmaz (ref23) 2023
Xu (ref34) 2022
Diederik (ref48)
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
Chenlin (ref6)
Grassucci (ref21) 2023
ref26
ref25
Chen (ref47) 2023
Choukroun (ref20)
ref28
Kim (ref19)
ref27
ref29
Krizhevsky (ref43) 2009
Sohl-Dickstein (ref2)
References_xml – year: 2023
  ident: ref8
  article-title: A reparameterized discrete diffusion model for text generation
  publication-title: arXiv:2302.05737
– ident: ref33
  doi: 10.1109/TCSVT.2021.3082521
– ident: ref36
  doi: 10.1109/ICASSP49357.2023.10094735
– year: 2023
  ident: ref17
  article-title: MADiff: Offline multi-agent learning with diffusion models
  publication-title: arXiv:2305.17330
– start-page: 2256
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref2
  article-title: Deep unsupervised learning using non-equilibrium thermodynamics
– ident: ref26
  doi: 10.1109/VTC2022-Fall57202.2022.10012860
– ident: ref31
  doi: 10.1109/TCOMM.2018.2814603
– ident: ref38
  doi: 10.1109/ICCV48922.2021.00986
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref49
  article-title: SGDR: Stochastic gradient descent with warm restarts
– start-page: 1530
  volume-title: Proc. 32nd Int. Conf. Int. Conf. Mach. Learn.
  ident: ref12
  article-title: Variational inference with normalizing flows
– ident: ref9
  doi: 10.1109/CVPR52729.2023.01770
– volume: 33
  start-page: 6840
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref3
  article-title: Denoising diffusion probabilistic models
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent
  ident: ref6
  article-title: SDEdit: Guided image synthesis and editing with stochastic differential equations
– start-page: 1
  volume-title: Proc. 11th Int. Conf. Learn. Represent.
  ident: ref16
  article-title: Is conditional generative modeling all you need for decision making?
– ident: ref35
  doi: 10.1109/JSAC.2022.3180802
– volume: 139
  start-page: 8162
  volume-title: Proc. 38th Int. Conf. Mach. Learn.
  ident: ref46
  article-title: Improved denoising diffusion probabilistic models
– year: 2009
  ident: ref43
  article-title: Learning multiple layers of features from tiny images
– ident: ref40
  doi: 10.1007/978-3-319-24574-4_28
– year: 2022
  ident: ref34
  article-title: Deep joint source-channel coding for semantic communications
  publication-title: arXiv:2211.08747
– year: 2022
  ident: ref5
  article-title: Diffusion models: A comprehensive survey of methods and applications
  publication-title: arXiv:2209.00796
– ident: ref18
  doi: 10.1109/JSAC.2023.3287547
– ident: ref29
  doi: 10.1109/MSP.2010.938080
– start-page: 1
  volume-title: Proc. 26th Int. ITG Workshop Smart Antennas 13th Conf. Syst. Commun. Coding (WSA SCC)
  ident: ref19
  article-title: Learning end-to-end channel coding with diffusion models
– ident: ref1
  doi: 10.1109/GLOBECOM54140.2023.10436728
– ident: ref32
  doi: 10.1109/TCCN.2019.2919300
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref48
  article-title: Adam: A method for stochastic optimization
– year: 2023
  ident: ref23
  article-title: High perceptual quality wireless image delivery with denoising diffusion models
  publication-title: arXiv:2309.15889
– ident: ref7
  doi: 10.1109/ICCV48922.2021.01410
– year: 2023
  ident: ref22
  article-title: CommIN: Semantic image communications as an inverse problem with INN-guided diffusion models
  publication-title: arXiv:2310.01130
– ident: ref39
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref14
  doi: 10.1109/INFOCT.2019.8710893
– ident: ref13
  doi: 10.1109/TIP.2017.2662206
– ident: ref27
  doi: 10.1109/COMST.2022.3223224
– ident: ref30
  doi: 10.1109/49.947033
– year: 2023
  ident: ref47
  article-title: On the importance of noise scheduling for diffusion models
  publication-title: arXiv:2301.10972
– volume-title: Frame Stucture Channel Coding and Modulation for the Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2)
  year: 2008
  ident: ref45
– ident: ref28
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref4
  article-title: Denoising diffusion implicit models
– ident: ref41
  doi: 10.5244/C.30.87
– year: 2023
  ident: ref24
  article-title: Diffusion models for audio semantic communication
  publication-title: arXiv:2309.07195
– ident: ref42
  doi: 10.48550/ARXIV.1706.03762
– ident: ref44
  doi: 10.1109/CVPRW.2017.149
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref10
  article-title: Auto-encoding variational Bayes
– ident: ref25
  doi: 10.23919/JCIN.2021.9663101
– start-page: 1
  volume-title: Proc. 11th Int. Conf. Learn. Represent.
  ident: ref20
  article-title: Denoising diffusion error correction codes
– ident: ref37
  doi: 10.1109/tcomm.2024.3386577
– year: 2023
  ident: ref21
  article-title: Generative semantic communication: Diffusion models beyond bit recovery
  publication-title: arXiv:2306.04321
– ident: ref11
  doi: 10.5555/2969033.2969125
– ident: ref15
  doi: 10.1109/CACRE54574.2022.9834193
SSID ssj0017655
Score 2.6691716
Snippet Diffusion models (DM) can gradually learn to remove noise, which have been widely used in artificial intelligence generated content (AIGC) in recent years. The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11168
SubjectTerms Adaptation models
Algorithms
Artificial intelligence
Channel estimation
Channel noise
Codes
Communications systems
Decoding
Diffusion layers
Diffusion models
Error correcting codes
Generative adversarial networks
Image coding
Image communication
Image transmission
joint source-channel coding
Mean square errors
Noise reduction
Sampling
semantic communications
Semantics
Wireless communication
Wireless communications
wireless image transmission
Title CDDM: Channel Denoising Diffusion Models for Wireless Semantic Communications
URI https://ieeexplore.ieee.org/document/10480348
https://www.proquest.com/docview/3102974971
Volume 23
WOSCitedRecordID wos001312963400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA9ueNCDz4nTKTl48dCtTdKm8Sarw8uG4MTdSpoHFGon6-bfb5J2Y0MUvPWQlPJ9_d6PHwB3IUVYoCDyAiqJR2TIPeOFSM_HxrxmnAaaawc2QSeTeDZjL82wupuFUUq55jPVt4-uli_nYmVTZUbCSexjErdAi9KoHtbalAxo5CBOjQRbYBm6qUn6bDB9H5pIEJE-xtTEG2THBjlQlR-a2JmX0fE_P-wEHDV-JHysGX8K9lR5Bg63tgueg_EwScYP0M4PlKqAiSrnuc0MwCTXemWzZNAioRUVNI4rtG2whVF78FV9GGrnAu7MjlQd8DZ6mg6fvQY9wROIoaUnKROZjDnLRKglYtIPkQ5UxhQOuNaE4kggrDSxgFU8jkNfcYS0MvQjPFARvgDtcl6qSwBRoJGUGfWFJMQXNnUYxdIOtUqijabtgsGanqloVotbhIsidSGGz1LDgdRyIG040AX3mxuf9VqNP852LMW3ztXE7oLemmdpI3hVarxVZEIkRoOrX65dgwP79rpPrAfay8VK3YB98bXMq8Wt-6e-AY11x-w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP_QKagH3-J0ag5ePFTTJG0ab7I5JrohONFbafOAwezEbf79JmkdG6LgrYeElu_r9378AM4jTqgkYRyEXLGAqSgLrBeiAkytec0zHprMeLAJ3uslr6_isRpW97MwWmvffKYv3aOv5auRnLpUmZVwlmDKkmVYiRgjuBzXmhUNeOxBTq0MO2gZPqtKYnHVf2naWJCwS0q5jTjYghXysCo_dLE3MO2tf37aNmxWniS6KVm_A0u62IWNuf2Ce9Bttlrda-QmCAo9RC1djAYuN4BaA2OmLk-GHBbacIys64pcI-zQKj70pN8svQcSLUyPjPfhuX3bb3aCCj8hkESQSaC4kLlKMpHLyCgiFI6ICXUuNA0zYxinsSRUG-Ygq7IkibDOCDHa0o9loY7pAdSKUaEPAZHQEKVyjqViDEuXPIwT5cZaFTNW19bh6pueqayWizuMi2HqgwwsUsuB1HEgrThQh4vZjfdyscYfZ_cdxefOlcSuQ-ObZ2kleuPU-qvEBkmCh0e_XDuDtU6_-5A-3PXuj2HdvansGmtAbfIx1SewKj8ng_HHqf-_vgAfOssz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CDDM%3A+Channel+Denoising+Diffusion+Models+for+Wireless+Semantic+Communications&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Wu%2C+Tong&rft.au=Chen%2C+Zhiyong&rft.au=He%2C+Dazhi&rft.au=Liang%2C+Qian&rft.date=2024-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=23&rft.issue=9&rft.spage=11168&rft_id=info:doi/10.1109%2FTWC.2024.3379244&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon