Polynomial-time equivalences and refined algorithms for longest common subsequence variants
The problem of computing the longest common subsequence of two sequences (LCS for short) is a classical and fundamental problem in computer science. In this article, we study four variants of LCS: the Repetition-Bounded Longest Common Subsequence problem (RBLCS), the Multiset-Restricted Common Subse...
Uložené v:
| Vydané v: | Discrete Applied Mathematics Ročník 353; s. 44 - 64 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
15.08.2024
|
| Predmet: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The problem of computing the longest common subsequence of two sequences (LCS for short) is a classical and fundamental problem in computer science. In this article, we study four variants of LCS: the Repetition-Bounded Longest Common Subsequence problem (RBLCS), the Multiset-Restricted Common Subsequence problem (MRCS), the Two-Side-Filled Longest Common Subsequence problem (2FLCS), and the One-Side-Filled Longest Common Subsequence problem (1FLCS). Although the original LCS can be solved in polynomial time, all these four variants are known to be NP-hard. Recently, an exact, O(1.44225n)-time, dynamic programming (DP) based algorithm for RBLCS was proposed, where the two input sequences have lengths n and poly(n). Here, we first establish that each of MRCS, 1FLCS, and 2FLCS is polynomially equivalent to RBLCS. Then, we design a refined DP-based algorithm for RBLCS that runs in O(1.41422n) time, which implies that MRCS, 1FLCS, and 2FLCS can also be solved in O(1.41422n) time. Finally, we give a polynomial-time 2-approximation algorithm for 2FLCS. |
|---|---|
| AbstractList | The problem of computing the longest common subsequence of two sequences (LCS for short) is a classical and fundamental problem in computer science. In this article, we study four variants of LCS: the Repetition-Bounded Longest Common Subsequence problem (RBLCS), the Multiset-Restricted Common Subsequence problem (MRCS), the Two-Side-Filled Longest Common Subsequence problem (2FLCS), and the One-Side-Filled Longest Common Subsequence problem (1FLCS). Although the original LCS can be solved in polynomial time, all these four variants are known to be NP-hard. Recently, an exact, O(1.44225n)-time, dynamic programming (DP) based algorithm for RBLCS was proposed, where the two input sequences have lengths n and poly(n). Here, we first establish that each of MRCS, 1FLCS, and 2FLCS is polynomially equivalent to RBLCS. Then, we design a refined DP-based algorithm for RBLCS that runs in O(1.41422n) time, which implies that MRCS, 1FLCS, and 2FLCS can also be solved in O(1.41422n) time. Finally, we give a polynomial-time 2-approximation algorithm for 2FLCS. |
| Author | Utashima, Tadatoshi Miyano, Eiji Asahiro, Yuichi Lin, Guohui Jansson, Jesper Ono, Hirotaka |
| Author_xml | – sequence: 1 givenname: Yuichi surname: Asahiro fullname: Asahiro, Yuichi email: asahiro@is.kyusan-u.ac.jp organization: Kyushu Sangyo University, Fukuoka, Japan – sequence: 2 givenname: Jesper surname: Jansson fullname: Jansson, Jesper email: jj@i.kyoto-u.ac.jp organization: Kyoto University, Kyoto, Japan – sequence: 3 givenname: Guohui surname: Lin fullname: Lin, Guohui email: guohui@ualberta.ca organization: University of Alberta, Edmonton, Canada – sequence: 4 givenname: Eiji orcidid: 0000-0002-4260-7818 surname: Miyano fullname: Miyano, Eiji email: miyano@ai.kyutech.ac.jp organization: Kyushu Institute of Technology, Iizuka, Japan – sequence: 5 givenname: Hirotaka surname: Ono fullname: Ono, Hirotaka email: ono@nagoya-u.jp organization: Nagoya University, Nagoya, Japan – sequence: 6 givenname: Tadatoshi surname: Utashima fullname: Utashima, Tadatoshi email: utashima.tadatoshi965@mail.kyutech.jp organization: Kyushu Institute of Technology, Iizuka, Japan |
| BookMark | eNp9kF1LwzAUhoNMcJv-AO_yB1pPsjRt8UqGXzDQCwXBi3CapjOjTTTpBvv3psxr4YXDgfMcHt4FmTnvDCHXDHIGTN7s8haHnAMXOaSAPCNzVpU8k2XJZmSebmTGWfVxQRYx7gCApW1OPl99f3R-sNhnox0MNT97e8DeOG0iRdfSYDrrTEux3_pgx68h0s4H2nu3NXGk2g-DdzTum5jQCaMHDBbdGC_JeYd9NFd_c0neH-7f1k_Z5uXxeX23yTSv-Zi1TJeyQqybsuoEbwvUrCh1BxIbXBWN0CC50YUWAqEuBOi6Nl0tUTbQFIVYLQk7_dXBx5h81XewA4ajYqCmdtROpXbU1I6CFJCJuT0xJokdrAkqajvZtzYYParW23_oXzGacY0 |
| Cites_doi | 10.1016/j.tcs.2019.09.022 10.1016/j.tcs.2020.07.042 10.1145/321796.321811 10.1186/1471-2105-11-304 10.1145/360825.360861 10.1145/321879.321880 10.1109/TCBB.2012.57 10.1016/j.endm.2008.01.042 10.1145/322033.322044 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.dam.2024.04.006 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1872-6771 |
| EndPage | 64 |
| ExternalDocumentID | 10_1016_j_dam_2024_04_006 S0166218X24001422 |
| GroupedDBID | -~X ADEZE AFTJW ALMA_UNASSIGNED_HOLDINGS FDB OAUVE AAYXX AI. CITATION FA8 VH1 WUQ |
| ID | FETCH-LOGICAL-c292t-d1c768aa9b78f42d5ac157cf06aba35b4c062ec5c44a09540c99ef96a6b0b5543 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001332996300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-218X |
| IngestDate | Sat Nov 29 02:59:47 EST 2025 Sat May 25 15:40:22 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiset-restricted Longest common subsequence Two-side-filled Dynamic programming Exact algorithm Approximation algorithm One-side-filled Repetition-bounded |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c292t-d1c768aa9b78f42d5ac157cf06aba35b4c062ec5c44a09540c99ef96a6b0b5543 |
| ORCID | 0000-0002-4260-7818 |
| OpenAccessLink | https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2022.15 |
| PageCount | 21 |
| ParticipantIDs | crossref_primary_10_1016_j_dam_2024_04_006 elsevier_sciencedirect_doi_10_1016_j_dam_2024_04_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-15 |
| PublicationDateYYYYMMDD | 2024-08-15 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Discrete Applied Mathematics |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Castelli, Dondi, Mauri, Zoppis (b7) 2019; 796 Asahiro, Jansson, Lin, Miyano, Ono, Utashima (b2) 2020; 838 Asahiro, Jansson, Lin, Miyano, Ono, Utashima (b3) 2022; vol. 223 Adi, Braga, Fernandes, Ferreira, Martinez, Sagot, Stefanes, Tjandraatmadja, Wakabayashi (b1) 2008; 30 Bulteau, Hüffner, Komusiewicz, Niedermeier (b5) 2014; 114 Hirschberg (b9) 1975; 18 Cormen, Leiserson, Rivest, Stein (b8) 2022 Hirschberg (b10) 1977; 24 Bergroth, Hakonen, Raita (b4) 2000 Lowrance, Wagner (b12) 1975; 22 Mincu, Popa (b13) 2018; vol. 11147 Muñoz, Zheng, Zhu, Albert, Rounsley, Sankoff (b15) 2010; 11 Wagner, Fischer (b16) 1974; 21 Castelli, Dondi, Mauri, Zoppis (b6) 2017; vol. 78 Mincu, Popa (b14) 2018 Jiang, Zheng, Sankoff, Zhu (b11) 2012; 9 Bulteau (10.1016/j.dam.2024.04.006_b5) 2014; 114 Jiang (10.1016/j.dam.2024.04.006_b11) 2012; 9 Asahiro (10.1016/j.dam.2024.04.006_b2) 2020; 838 Wagner (10.1016/j.dam.2024.04.006_b16) 1974; 21 Castelli (10.1016/j.dam.2024.04.006_b6) 2017; vol. 78 Hirschberg (10.1016/j.dam.2024.04.006_b10) 1977; 24 Muñoz (10.1016/j.dam.2024.04.006_b15) 2010; 11 Asahiro (10.1016/j.dam.2024.04.006_b3) 2022; vol. 223 Mincu (10.1016/j.dam.2024.04.006_b14) 2018 Bergroth (10.1016/j.dam.2024.04.006_b4) 2000 Hirschberg (10.1016/j.dam.2024.04.006_b9) 1975; 18 Adi (10.1016/j.dam.2024.04.006_b1) 2008; 30 Mincu (10.1016/j.dam.2024.04.006_b13) 2018; vol. 11147 Castelli (10.1016/j.dam.2024.04.006_b7) 2019; 796 Cormen (10.1016/j.dam.2024.04.006_b8) 2022 Lowrance (10.1016/j.dam.2024.04.006_b12) 1975; 22 |
| References_xml | – volume: vol. 78 start-page: 14:1 year: 2017 end-page: 14:13 ident: b6 article-title: The longest filled common subsequence problem publication-title: 28th Annual Symposium on Combinatorial Pattern Matching – volume: 9 start-page: 1220 year: 2012 end-page: 1229 ident: b11 article-title: Scaffold filling under the breakpoint and related distances publication-title: IEEE ACM Trans. Comput. Biol. Bioinform. – volume: 18 start-page: 341 year: 1975 end-page: 343 ident: b9 article-title: A linear space algorithm for computing maximal common subsequences publication-title: Commun. ACM – volume: 11 start-page: 304 year: 2010 ident: b15 article-title: Scaffold filling, contig fusion and comparative gene order inference publication-title: BMC Bioinform. – volume: vol. 11147 start-page: 297 year: 2018 end-page: 310 ident: b13 article-title: Better heuristic algorithms for the repetition free LCS and other variants publication-title: String Processing and Information Retrieval - 25th International Symposium, SPIRE 2018, Lima, Peru, October 9–11, 2018, Proceedings – volume: 22 start-page: 177 year: 1975 end-page: 183 ident: b12 article-title: An extension of the string-to-string correction problem publication-title: J. ACM – year: 2022 ident: b8 article-title: Introduction to Algorithms, 4th Edition – volume: 838 start-page: 238 year: 2020 end-page: 249 ident: b2 article-title: Exact algorithms for the repetition-bounded longest common subsequence problem publication-title: Theoret. Comput. Sci. – start-page: 39 year: 2000 end-page: 48 ident: b4 article-title: A survey of longest common subsequence algorithms publication-title: Seventh International Symposium on String Processing and Information Retrieval – volume: 114 year: 2014 ident: b5 article-title: Multivariate algorithmics for NP-hard string problems: The algorithmics column by Gerhard J. Woeginger publication-title: Bull. EATCS – volume: 21 start-page: 168 year: 1974 end-page: 173 ident: b16 article-title: The string-to-string correction problem publication-title: J. ACM – volume: 30 start-page: 243 year: 2008 end-page: 248 ident: b1 article-title: Repetition-free longest common subsequence publication-title: Electron. Notes Discret. Math. – start-page: 449 year: 2018 end-page: 453 ident: b14 article-title: Heuristic algorithms for the longest filled common subsequence problem publication-title: 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing – volume: vol. 223 start-page: 15:1 year: 2022 end-page: 15:17 ident: b3 article-title: Polynomial-time equivalences and refined algorithms for longest common subsequence variants publication-title: 33rd Annual Symposium on Combinatorial Pattern Matching – volume: 796 start-page: 272 year: 2019 end-page: 285 ident: b7 article-title: Comparing incomplete sequences via longest common subsequence publication-title: Theoret. Comput. Sci. – volume: 24 start-page: 664 year: 1977 end-page: 675 ident: b10 article-title: Algorithms for the longest common subsequence problem publication-title: J. ACM – volume: 796 start-page: 272 year: 2019 ident: 10.1016/j.dam.2024.04.006_b7 article-title: Comparing incomplete sequences via longest common subsequence publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2019.09.022 – volume: 838 start-page: 238 year: 2020 ident: 10.1016/j.dam.2024.04.006_b2 article-title: Exact algorithms for the repetition-bounded longest common subsequence problem publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2020.07.042 – start-page: 449 year: 2018 ident: 10.1016/j.dam.2024.04.006_b14 article-title: Heuristic algorithms for the longest filled common subsequence problem – volume: 21 start-page: 168 issue: 1 year: 1974 ident: 10.1016/j.dam.2024.04.006_b16 article-title: The string-to-string correction problem publication-title: J. ACM doi: 10.1145/321796.321811 – year: 2022 ident: 10.1016/j.dam.2024.04.006_b8 – volume: 11 start-page: 304 year: 2010 ident: 10.1016/j.dam.2024.04.006_b15 article-title: Scaffold filling, contig fusion and comparative gene order inference publication-title: BMC Bioinform. doi: 10.1186/1471-2105-11-304 – start-page: 39 year: 2000 ident: 10.1016/j.dam.2024.04.006_b4 article-title: A survey of longest common subsequence algorithms – volume: vol. 78 start-page: 14:1 year: 2017 ident: 10.1016/j.dam.2024.04.006_b6 article-title: The longest filled common subsequence problem – volume: 18 start-page: 341 issue: 6 year: 1975 ident: 10.1016/j.dam.2024.04.006_b9 article-title: A linear space algorithm for computing maximal common subsequences publication-title: Commun. ACM doi: 10.1145/360825.360861 – volume: vol. 223 start-page: 15:1 year: 2022 ident: 10.1016/j.dam.2024.04.006_b3 article-title: Polynomial-time equivalences and refined algorithms for longest common subsequence variants – volume: 114 year: 2014 ident: 10.1016/j.dam.2024.04.006_b5 article-title: Multivariate algorithmics for NP-hard string problems: The algorithmics column by Gerhard J. Woeginger publication-title: Bull. EATCS – volume: 22 start-page: 177 issue: 2 year: 1975 ident: 10.1016/j.dam.2024.04.006_b12 article-title: An extension of the string-to-string correction problem publication-title: J. ACM doi: 10.1145/321879.321880 – volume: 9 start-page: 1220 issue: 4 year: 2012 ident: 10.1016/j.dam.2024.04.006_b11 article-title: Scaffold filling under the breakpoint and related distances publication-title: IEEE ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2012.57 – volume: 30 start-page: 243 year: 2008 ident: 10.1016/j.dam.2024.04.006_b1 article-title: Repetition-free longest common subsequence publication-title: Electron. Notes Discret. Math. doi: 10.1016/j.endm.2008.01.042 – volume: vol. 11147 start-page: 297 year: 2018 ident: 10.1016/j.dam.2024.04.006_b13 article-title: Better heuristic algorithms for the repetition free LCS and other variants – volume: 24 start-page: 664 issue: 4 year: 1977 ident: 10.1016/j.dam.2024.04.006_b10 article-title: Algorithms for the longest common subsequence problem publication-title: J. ACM doi: 10.1145/322033.322044 |
| SSID | ssj0001218 ssj0000186 ssj0006644 |
| Score | 2.398764 |
| Snippet | The problem of computing the longest common subsequence of two sequences (LCS for short) is a classical and fundamental problem in computer science. In this... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 44 |
| SubjectTerms | Approximation algorithm Dynamic programming Exact algorithm Longest common subsequence Multiset-restricted One-side-filled Repetition-bounded Two-side-filled |
| Title | Polynomial-time equivalences and refined algorithms for longest common subsequence variants |
| URI | https://dx.doi.org/10.1016/j.dam.2024.04.006 |
| Volume | 353 |
| WOSCitedRecordID | wos001332996300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6771 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001218 issn: 0166-218X databaseCode: AIEXJ dateStart: 20220331 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6771 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001218 issn: 0166-218X databaseCode: AIEXJ dateStart: 20211213 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbpbg_bQ-mTbl_o0FONwZFl2T6GNn0s7LLQLaT0YGRZbhSCvU3isPsj-p87Y8mOybbQFgrBBBMbRfMx-jSa-YaQV4ECDi-wuUskSp8nWKyc88IXcSDLYhwqXZZts4n47CyZzdLz0ehHVwuzXcZVlVxdpZf_1dRwD4yNpbN_Ye7-pXADvoPR4Qpmh-sfGf68Xl5jrbFc-tg43tPfGwPvb_OlbTa5LoFaFp5cfqtXZjO3kgzesq7wrAmTzGGs3ho8ikuz9rawoZZO86ljsm8NOBxg3D2PPe0FYHuaPlnLubGFNF8ao-amz9eBBdKVep1o1Crv84KspMH7pp43_a9PzbVsO4R7U7MwwzgF4xh4tZWaNnh2o4DGxjOF8IFlzOxyZH1wEjPAiu3M0jnpMAoHbtZKRroF26qg31gKbFRiAQNCwQHGW0XbYE92u13IP-EocBCYT4sxsVvkkMVRCn7-cPJxOjsZ6JGh2N5RF8HbHVgBceNORt7-n-4AvU0l3BvCrynQgNZc3CN33X6ETiyO7pORrh6QOwNbPiRf9xBFh4iigCjqEEV3iKKAKOoQRS2i6ABRtEPUI_L53fTizQff9eTwFUvZxi_GCjaoUqZ5nJScFZFU4yhWZSBkLsMo5yoQTKtIcS6BvXP0BbpMhRR5kAN1DR-Tg6qu9BNCI9xuMJ2msdY8LguJSrlFxHjBExUW-pi87qYpu7TSK1mXk7jIYE4znNMsgE8gjgnvJjJz3NFywgzw8PvHnv7bY8_I0Q7iz8nBZtXoF-S22m7MevXSoeYnDXeT8A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial-time+equivalences+and+refined+algorithms+for+longest+common+subsequence+variants&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Asahiro%2C+Yuichi&rft.au=Jansson%2C+Jesper&rft.au=Lin%2C+Guohui&rft.au=Miyano%2C+Eiji&rft.date=2024-08-15&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=353&rft.spage=44&rft.epage=64&rft_id=info:doi/10.1016%2Fj.dam.2024.04.006&rft.externalDocID=S0166218X24001422 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |