Polynomial-time equivalences and refined algorithms for longest common subsequence variants

The problem of computing the longest common subsequence of two sequences (LCS for short) is a classical and fundamental problem in computer science. In this article, we study four variants of LCS: the Repetition-Bounded Longest Common Subsequence problem (RBLCS), the Multiset-Restricted Common Subse...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete Applied Mathematics Ročník 353; s. 44 - 64
Hlavní autori: Asahiro, Yuichi, Jansson, Jesper, Lin, Guohui, Miyano, Eiji, Ono, Hirotaka, Utashima, Tadatoshi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.08.2024
Predmet:
ISSN:0166-218X, 1872-6771
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The problem of computing the longest common subsequence of two sequences (LCS for short) is a classical and fundamental problem in computer science. In this article, we study four variants of LCS: the Repetition-Bounded Longest Common Subsequence problem (RBLCS), the Multiset-Restricted Common Subsequence problem (MRCS), the Two-Side-Filled Longest Common Subsequence problem (2FLCS), and the One-Side-Filled Longest Common Subsequence problem (1FLCS). Although the original LCS can be solved in polynomial time, all these four variants are known to be NP-hard. Recently, an exact, O(1.44225n)-time, dynamic programming (DP) based algorithm for RBLCS was proposed, where the two input sequences have lengths n and poly(n). Here, we first establish that each of MRCS, 1FLCS, and 2FLCS is polynomially equivalent to RBLCS. Then, we design a refined DP-based algorithm for RBLCS that runs in O(1.41422n) time, which implies that MRCS, 1FLCS, and 2FLCS can also be solved in O(1.41422n) time. Finally, we give a polynomial-time 2-approximation algorithm for 2FLCS.
AbstractList The problem of computing the longest common subsequence of two sequences (LCS for short) is a classical and fundamental problem in computer science. In this article, we study four variants of LCS: the Repetition-Bounded Longest Common Subsequence problem (RBLCS), the Multiset-Restricted Common Subsequence problem (MRCS), the Two-Side-Filled Longest Common Subsequence problem (2FLCS), and the One-Side-Filled Longest Common Subsequence problem (1FLCS). Although the original LCS can be solved in polynomial time, all these four variants are known to be NP-hard. Recently, an exact, O(1.44225n)-time, dynamic programming (DP) based algorithm for RBLCS was proposed, where the two input sequences have lengths n and poly(n). Here, we first establish that each of MRCS, 1FLCS, and 2FLCS is polynomially equivalent to RBLCS. Then, we design a refined DP-based algorithm for RBLCS that runs in O(1.41422n) time, which implies that MRCS, 1FLCS, and 2FLCS can also be solved in O(1.41422n) time. Finally, we give a polynomial-time 2-approximation algorithm for 2FLCS.
Author Utashima, Tadatoshi
Miyano, Eiji
Asahiro, Yuichi
Lin, Guohui
Jansson, Jesper
Ono, Hirotaka
Author_xml – sequence: 1
  givenname: Yuichi
  surname: Asahiro
  fullname: Asahiro, Yuichi
  email: asahiro@is.kyusan-u.ac.jp
  organization: Kyushu Sangyo University, Fukuoka, Japan
– sequence: 2
  givenname: Jesper
  surname: Jansson
  fullname: Jansson, Jesper
  email: jj@i.kyoto-u.ac.jp
  organization: Kyoto University, Kyoto, Japan
– sequence: 3
  givenname: Guohui
  surname: Lin
  fullname: Lin, Guohui
  email: guohui@ualberta.ca
  organization: University of Alberta, Edmonton, Canada
– sequence: 4
  givenname: Eiji
  orcidid: 0000-0002-4260-7818
  surname: Miyano
  fullname: Miyano, Eiji
  email: miyano@ai.kyutech.ac.jp
  organization: Kyushu Institute of Technology, Iizuka, Japan
– sequence: 5
  givenname: Hirotaka
  surname: Ono
  fullname: Ono, Hirotaka
  email: ono@nagoya-u.jp
  organization: Nagoya University, Nagoya, Japan
– sequence: 6
  givenname: Tadatoshi
  surname: Utashima
  fullname: Utashima, Tadatoshi
  email: utashima.tadatoshi965@mail.kyutech.jp
  organization: Kyushu Institute of Technology, Iizuka, Japan
BookMark eNp9kF1LwzAUhoNMcJv-AO_yB1pPsjRt8UqGXzDQCwXBi3CapjOjTTTpBvv3psxr4YXDgfMcHt4FmTnvDCHXDHIGTN7s8haHnAMXOaSAPCNzVpU8k2XJZmSebmTGWfVxQRYx7gCApW1OPl99f3R-sNhnox0MNT97e8DeOG0iRdfSYDrrTEux3_pgx68h0s4H2nu3NXGk2g-DdzTum5jQCaMHDBbdGC_JeYd9NFd_c0neH-7f1k_Z5uXxeX23yTSv-Zi1TJeyQqybsuoEbwvUrCh1BxIbXBWN0CC50YUWAqEuBOi6Nl0tUTbQFIVYLQk7_dXBx5h81XewA4ajYqCmdtROpXbU1I6CFJCJuT0xJokdrAkqajvZtzYYParW23_oXzGacY0
Cites_doi 10.1016/j.tcs.2019.09.022
10.1016/j.tcs.2020.07.042
10.1145/321796.321811
10.1186/1471-2105-11-304
10.1145/360825.360861
10.1145/321879.321880
10.1109/TCBB.2012.57
10.1016/j.endm.2008.01.042
10.1145/322033.322044
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.dam.2024.04.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 64
ExternalDocumentID 10_1016_j_dam_2024_04_006
S0166218X24001422
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
ID FETCH-LOGICAL-c292t-d1c768aa9b78f42d5ac157cf06aba35b4c062ec5c44a09540c99ef96a6b0b5543
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001332996300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Sat Nov 29 02:59:47 EST 2025
Sat May 25 15:40:22 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multiset-restricted
Longest common subsequence
Two-side-filled
Dynamic programming
Exact algorithm
Approximation algorithm
One-side-filled
Repetition-bounded
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-d1c768aa9b78f42d5ac157cf06aba35b4c062ec5c44a09540c99ef96a6b0b5543
ORCID 0000-0002-4260-7818
OpenAccessLink https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2022.15
PageCount 21
ParticipantIDs crossref_primary_10_1016_j_dam_2024_04_006
elsevier_sciencedirect_doi_10_1016_j_dam_2024_04_006
PublicationCentury 2000
PublicationDate 2024-08-15
PublicationDateYYYYMMDD 2024-08-15
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Discrete Applied Mathematics
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Castelli, Dondi, Mauri, Zoppis (b7) 2019; 796
Asahiro, Jansson, Lin, Miyano, Ono, Utashima (b2) 2020; 838
Asahiro, Jansson, Lin, Miyano, Ono, Utashima (b3) 2022; vol. 223
Adi, Braga, Fernandes, Ferreira, Martinez, Sagot, Stefanes, Tjandraatmadja, Wakabayashi (b1) 2008; 30
Bulteau, Hüffner, Komusiewicz, Niedermeier (b5) 2014; 114
Hirschberg (b9) 1975; 18
Cormen, Leiserson, Rivest, Stein (b8) 2022
Hirschberg (b10) 1977; 24
Bergroth, Hakonen, Raita (b4) 2000
Lowrance, Wagner (b12) 1975; 22
Mincu, Popa (b13) 2018; vol. 11147
Muñoz, Zheng, Zhu, Albert, Rounsley, Sankoff (b15) 2010; 11
Wagner, Fischer (b16) 1974; 21
Castelli, Dondi, Mauri, Zoppis (b6) 2017; vol. 78
Mincu, Popa (b14) 2018
Jiang, Zheng, Sankoff, Zhu (b11) 2012; 9
Bulteau (10.1016/j.dam.2024.04.006_b5) 2014; 114
Jiang (10.1016/j.dam.2024.04.006_b11) 2012; 9
Asahiro (10.1016/j.dam.2024.04.006_b2) 2020; 838
Wagner (10.1016/j.dam.2024.04.006_b16) 1974; 21
Castelli (10.1016/j.dam.2024.04.006_b6) 2017; vol. 78
Hirschberg (10.1016/j.dam.2024.04.006_b10) 1977; 24
Muñoz (10.1016/j.dam.2024.04.006_b15) 2010; 11
Asahiro (10.1016/j.dam.2024.04.006_b3) 2022; vol. 223
Mincu (10.1016/j.dam.2024.04.006_b14) 2018
Bergroth (10.1016/j.dam.2024.04.006_b4) 2000
Hirschberg (10.1016/j.dam.2024.04.006_b9) 1975; 18
Adi (10.1016/j.dam.2024.04.006_b1) 2008; 30
Mincu (10.1016/j.dam.2024.04.006_b13) 2018; vol. 11147
Castelli (10.1016/j.dam.2024.04.006_b7) 2019; 796
Cormen (10.1016/j.dam.2024.04.006_b8) 2022
Lowrance (10.1016/j.dam.2024.04.006_b12) 1975; 22
References_xml – volume: vol. 78
  start-page: 14:1
  year: 2017
  end-page: 14:13
  ident: b6
  article-title: The longest filled common subsequence problem
  publication-title: 28th Annual Symposium on Combinatorial Pattern Matching
– volume: 9
  start-page: 1220
  year: 2012
  end-page: 1229
  ident: b11
  article-title: Scaffold filling under the breakpoint and related distances
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinform.
– volume: 18
  start-page: 341
  year: 1975
  end-page: 343
  ident: b9
  article-title: A linear space algorithm for computing maximal common subsequences
  publication-title: Commun. ACM
– volume: 11
  start-page: 304
  year: 2010
  ident: b15
  article-title: Scaffold filling, contig fusion and comparative gene order inference
  publication-title: BMC Bioinform.
– volume: vol. 11147
  start-page: 297
  year: 2018
  end-page: 310
  ident: b13
  article-title: Better heuristic algorithms for the repetition free LCS and other variants
  publication-title: String Processing and Information Retrieval - 25th International Symposium, SPIRE 2018, Lima, Peru, October 9–11, 2018, Proceedings
– volume: 22
  start-page: 177
  year: 1975
  end-page: 183
  ident: b12
  article-title: An extension of the string-to-string correction problem
  publication-title: J. ACM
– year: 2022
  ident: b8
  article-title: Introduction to Algorithms, 4th Edition
– volume: 838
  start-page: 238
  year: 2020
  end-page: 249
  ident: b2
  article-title: Exact algorithms for the repetition-bounded longest common subsequence problem
  publication-title: Theoret. Comput. Sci.
– start-page: 39
  year: 2000
  end-page: 48
  ident: b4
  article-title: A survey of longest common subsequence algorithms
  publication-title: Seventh International Symposium on String Processing and Information Retrieval
– volume: 114
  year: 2014
  ident: b5
  article-title: Multivariate algorithmics for NP-hard string problems: The algorithmics column by Gerhard J. Woeginger
  publication-title: Bull. EATCS
– volume: 21
  start-page: 168
  year: 1974
  end-page: 173
  ident: b16
  article-title: The string-to-string correction problem
  publication-title: J. ACM
– volume: 30
  start-page: 243
  year: 2008
  end-page: 248
  ident: b1
  article-title: Repetition-free longest common subsequence
  publication-title: Electron. Notes Discret. Math.
– start-page: 449
  year: 2018
  end-page: 453
  ident: b14
  article-title: Heuristic algorithms for the longest filled common subsequence problem
  publication-title: 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
– volume: vol. 223
  start-page: 15:1
  year: 2022
  end-page: 15:17
  ident: b3
  article-title: Polynomial-time equivalences and refined algorithms for longest common subsequence variants
  publication-title: 33rd Annual Symposium on Combinatorial Pattern Matching
– volume: 796
  start-page: 272
  year: 2019
  end-page: 285
  ident: b7
  article-title: Comparing incomplete sequences via longest common subsequence
  publication-title: Theoret. Comput. Sci.
– volume: 24
  start-page: 664
  year: 1977
  end-page: 675
  ident: b10
  article-title: Algorithms for the longest common subsequence problem
  publication-title: J. ACM
– volume: 796
  start-page: 272
  year: 2019
  ident: 10.1016/j.dam.2024.04.006_b7
  article-title: Comparing incomplete sequences via longest common subsequence
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2019.09.022
– volume: 838
  start-page: 238
  year: 2020
  ident: 10.1016/j.dam.2024.04.006_b2
  article-title: Exact algorithms for the repetition-bounded longest common subsequence problem
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2020.07.042
– start-page: 449
  year: 2018
  ident: 10.1016/j.dam.2024.04.006_b14
  article-title: Heuristic algorithms for the longest filled common subsequence problem
– volume: 21
  start-page: 168
  issue: 1
  year: 1974
  ident: 10.1016/j.dam.2024.04.006_b16
  article-title: The string-to-string correction problem
  publication-title: J. ACM
  doi: 10.1145/321796.321811
– year: 2022
  ident: 10.1016/j.dam.2024.04.006_b8
– volume: 11
  start-page: 304
  year: 2010
  ident: 10.1016/j.dam.2024.04.006_b15
  article-title: Scaffold filling, contig fusion and comparative gene order inference
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-304
– start-page: 39
  year: 2000
  ident: 10.1016/j.dam.2024.04.006_b4
  article-title: A survey of longest common subsequence algorithms
– volume: vol. 78
  start-page: 14:1
  year: 2017
  ident: 10.1016/j.dam.2024.04.006_b6
  article-title: The longest filled common subsequence problem
– volume: 18
  start-page: 341
  issue: 6
  year: 1975
  ident: 10.1016/j.dam.2024.04.006_b9
  article-title: A linear space algorithm for computing maximal common subsequences
  publication-title: Commun. ACM
  doi: 10.1145/360825.360861
– volume: vol. 223
  start-page: 15:1
  year: 2022
  ident: 10.1016/j.dam.2024.04.006_b3
  article-title: Polynomial-time equivalences and refined algorithms for longest common subsequence variants
– volume: 114
  year: 2014
  ident: 10.1016/j.dam.2024.04.006_b5
  article-title: Multivariate algorithmics for NP-hard string problems: The algorithmics column by Gerhard J. Woeginger
  publication-title: Bull. EATCS
– volume: 22
  start-page: 177
  issue: 2
  year: 1975
  ident: 10.1016/j.dam.2024.04.006_b12
  article-title: An extension of the string-to-string correction problem
  publication-title: J. ACM
  doi: 10.1145/321879.321880
– volume: 9
  start-page: 1220
  issue: 4
  year: 2012
  ident: 10.1016/j.dam.2024.04.006_b11
  article-title: Scaffold filling under the breakpoint and related distances
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2012.57
– volume: 30
  start-page: 243
  year: 2008
  ident: 10.1016/j.dam.2024.04.006_b1
  article-title: Repetition-free longest common subsequence
  publication-title: Electron. Notes Discret. Math.
  doi: 10.1016/j.endm.2008.01.042
– volume: vol. 11147
  start-page: 297
  year: 2018
  ident: 10.1016/j.dam.2024.04.006_b13
  article-title: Better heuristic algorithms for the repetition free LCS and other variants
– volume: 24
  start-page: 664
  issue: 4
  year: 1977
  ident: 10.1016/j.dam.2024.04.006_b10
  article-title: Algorithms for the longest common subsequence problem
  publication-title: J. ACM
  doi: 10.1145/322033.322044
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.398764
Snippet The problem of computing the longest common subsequence of two sequences (LCS for short) is a classical and fundamental problem in computer science. In this...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 44
SubjectTerms Approximation algorithm
Dynamic programming
Exact algorithm
Longest common subsequence
Multiset-restricted
One-side-filled
Repetition-bounded
Two-side-filled
Title Polynomial-time equivalences and refined algorithms for longest common subsequence variants
URI https://dx.doi.org/10.1016/j.dam.2024.04.006
Volume 353
WOSCitedRecordID wos001332996300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20220331
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20211213
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbpbg_bQ-mTbl_o0FONwZFl2T6GNn0s7LLQLaT0YGRZbhSCvU3isPsj-p87Y8mOybbQFgrBBBMbRfMx-jSa-YaQV4ECDi-wuUskSp8nWKyc88IXcSDLYhwqXZZts4n47CyZzdLz0ehHVwuzXcZVlVxdpZf_1dRwD4yNpbN_Ye7-pXADvoPR4Qpmh-sfGf68Xl5jrbFc-tg43tPfGwPvb_OlbTa5LoFaFp5cfqtXZjO3kgzesq7wrAmTzGGs3ho8ikuz9rawoZZO86ljsm8NOBxg3D2PPe0FYHuaPlnLubGFNF8ao-amz9eBBdKVep1o1Crv84KspMH7pp43_a9PzbVsO4R7U7MwwzgF4xh4tZWaNnh2o4DGxjOF8IFlzOxyZH1wEjPAiu3M0jnpMAoHbtZKRroF26qg31gKbFRiAQNCwQHGW0XbYE92u13IP-EocBCYT4sxsVvkkMVRCn7-cPJxOjsZ6JGh2N5RF8HbHVgBceNORt7-n-4AvU0l3BvCrynQgNZc3CN33X6ETiyO7pORrh6QOwNbPiRf9xBFh4iigCjqEEV3iKKAKOoQRS2i6ABRtEPUI_L53fTizQff9eTwFUvZxi_GCjaoUqZ5nJScFZFU4yhWZSBkLsMo5yoQTKtIcS6BvXP0BbpMhRR5kAN1DR-Tg6qu9BNCI9xuMJ2msdY8LguJSrlFxHjBExUW-pi87qYpu7TSK1mXk7jIYE4znNMsgE8gjgnvJjJz3NFywgzw8PvHnv7bY8_I0Q7iz8nBZtXoF-S22m7MevXSoeYnDXeT8A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial-time+equivalences+and+refined+algorithms+for+longest+common+subsequence+variants&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Asahiro%2C+Yuichi&rft.au=Jansson%2C+Jesper&rft.au=Lin%2C+Guohui&rft.au=Miyano%2C+Eiji&rft.date=2024-08-15&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=353&rft.spage=44&rft.epage=64&rft_id=info:doi/10.1016%2Fj.dam.2024.04.006&rft.externalDocID=S0166218X24001422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon