Two-Dimensional DOA estimation via matrix completion and sparse matrix recovery for coprime planar array

The coprime planar array (CPPA) can obtain a larger virtual aperture using the sum-difference co-array (SDCA). Nonetheless, the holes in the SDCA always cause the virtual aperture to be not fully utilized. In order to solve this issue, a two-dimensional (2-D) directional of arrival (DOA) estimation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on vehicular technology Ročník 72; číslo 11; s. 1 - 14
Hlavní autoři: Liu, Donghe, Zhao, Yongbo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9545, 1939-9359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The coprime planar array (CPPA) can obtain a larger virtual aperture using the sum-difference co-array (SDCA). Nonetheless, the holes in the SDCA always cause the virtual aperture to be not fully utilized. In order to solve this issue, a two-dimensional (2-D) directional of arrival (DOA) estimation algorithm with CPPA via matrix completion and sparse matrix recovery is proposed in this paper. To accurately complete the missing elements in the SDCA, we construct an optimization problem based on the truncated nuclear norm regularization (TNNR) by constraining the conjugate flip symmetry property of the virtual array and the noise term. Moreover, we derive a complex-valued sparse matrix recovery algorithm based on the fast iterative shrinkage-thresholding (FISTA) method avoiding using Kronecker product operations between dictionary matrices, which aims to reduce the computational complexity of the conventional vector-form sparse recovery algorithms. Therefore, the proposed algorithm can achieve a larger virtual aperture and lower computational complexity, improving the angle estimation performance. Simulation results demonstrate the effectiveness of the proposed algorithm for CPPA.
AbstractList The coprime planar array (CPPA) can obtain a larger virtual aperture using the sum-difference co-array (SDCA). Nonetheless, the holes in the SDCA always cause the virtual aperture to be not fully utilized. In order to solve this issue, a two-dimensional (2-D) directional of arrival (DOA) estimation algorithm with CPPA via matrix completion and sparse matrix recovery is proposed in this paper. To accurately complete the missing elements in the SDCA, we construct an optimization problem based on the truncated nuclear norm regularization (TNNR) by constraining the conjugate flip symmetry property of the virtual array and the noise term. Moreover, we derive a complex-valued sparse matrix recovery algorithm based on the fast iterative shrinkage-thresholding (FISTA) method avoiding using Kronecker product operations between dictionary matrices, which aims to reduce the computational complexity of the conventional vector-form sparse recovery algorithms. Therefore, the proposed algorithm can achieve a larger virtual aperture and lower computational complexity, improving the angle estimation performance. Simulation results demonstrate the effectiveness of the proposed algorithm for CPPA.
The coprime planar array (CPPA) can obtain a larger virtual aperture using the sum-difference co-array (SDCA). Nonetheless, the holes in the SDCA always cause the virtual aperture to be not fully utilized. In order to solve this issue, a two-dimensional (2-D) directional of arrival (DOA) estimation algorithm with CPPA via matrix completion and sparse matrix recovery is proposed in this article. To accurately complete the missing elements in the SDCA, we construct an optimization problem based on the truncated nuclear norm regularization (TNNR) by constraining the conjugate flip symmetry property of the virtual array and the noise term. Moreover, we derive a complex-valued sparse matrix recovery algorithm based on the fast iterative shrinkage-thresholding (FISTA) method avoiding using Kronecker product operations between dictionary matrices, which aims to reduce the computational complexity of the conventional vector-form sparse recovery algorithms. Therefore, the proposed algorithm can achieve a larger virtual aperture and lower computational complexity, improving the angle estimation performance. Simulation results demonstrate the effectiveness of the proposed algorithm for CPPA.
Author Liu, Donghe
Zhao, Yongbo
Author_xml – sequence: 1
  givenname: Donghe
  orcidid: 0000-0002-3190-3806
  surname: Liu
  fullname: Liu, Donghe
  organization: Donghe Liu and Yongbo Zhao are with the National Key Laboratory of Radar Signal Processing, School of Electronic Engineering, Xidian University, Xi'an, China
– sequence: 2
  givenname: Yongbo
  orcidid: 0000-0002-6453-0786
  surname: Zhao
  fullname: Zhao, Yongbo
  organization: Donghe Liu and Yongbo Zhao are with the National Key Laboratory of Radar Signal Processing, School of Electronic Engineering, Xidian University, Xi'an, China
BookMark eNp9kDtPwzAUhS1UJFpgZ2CwxJxix3nYY9Xykip1CazWjXsjUqVxsNNC_z3uAwkxMN3Xd650zogMWtsiITecjTln6r54K8Yxi8VYxDJRPD0jQ66EipRI1YAMGeMyUmmSXpCR96swJoEakvfi00azeo2tr20LDZ0tJhR9X6-hDwu6rYGG1tVf1Nh11-BhC-2S-g6cx5-jQ2O36Ha0si6QnQsvaddAC46Cc7C7IucVNB6vT_WSvD4-FNPnaL54eplO5pGJVdxHpsoNcgUlyCwzJqkyCTLnGSAHblJhkjKRyzJTJeYir1LGUS2xyqFUZaUwFZfk7vi3c_ZjE5zold244MzrWCrGWcJ4HqjsSBlnvXdYaVP3B8e9g7rRnOl9qjqkqvep6lOqQcj-CPdWwe3-k9weJTUi_sJ5IiUT4hu9DodN
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_TVT_2025_3532521
crossref_primary_10_1109_TVT_2024_3363008
crossref_primary_10_1109_TAES_2024_3525444
crossref_primary_10_1109_TVT_2025_3550704
crossref_primary_10_1109_TVT_2023_3349026
Cites_doi 10.1109/29.32276
10.1137/080738970
10.1109/ACCESS.2019.2928130
10.1109/78.224260
10.1109/LCOMM.2020.3022455
10.1137/080716542
10.1109/29.60109
10.1109/TSP.2017.2736493
10.1109/LSP.2015.2409153
10.1109/ICASSP.2013.6638403
10.1109/TAES.2008.4655353
10.1109/TSP.2017.2739105
10.1109/ACCESS.2018.2813014
10.1109/SAM48682.2020.9104376
10.1049/ip-f-2.1993.0005
10.1109/79.526899
10.1109/TAP.1968.1139138
10.1109/TSP.2010.2089682
10.1109/CACSD.2004.1393891
10.1109/TSP.2018.2872012
10.1109/ACCESS.2021.3092529
10.1109/78.485927
10.1109/TSP.2009.2016892
10.1109/JSTSP.2016.2627184
10.1109/CIE-Radar.2011.6159937
10.1109/TSP.2016.2626255
10.1109/TCSII.2020.3025629
10.1109/BenMAS.2014.7529468
10.1109/LSP.2021.3130018
10.1109/ICDSP.2018.8631640
10.1109/TPAMI.2012.271
10.1002/0471221082
10.1137/S0895479896303430
10.1109/78.599939
10.1109/ISCAS.2008.4541350
10.1109/TSP.2010.2049264
10.1109/LSP.2021.3099074
10.1109/TAP.1986.1143830
10.1109/JSEN.2016.2567422
10.1109/7.670322
10.1109/ACSSC.2010.5757766
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2023.3284915
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 14
ExternalDocumentID 10_1109_TVT_2023_3284915
10148803
Genre orig-research
GrantInformation_xml – fundername: Fund for Foreign Scholars in University Research and Teaching Programs
  grantid: B18039
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
VH1
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-cf7ce19aba866cc4f68a8716ae1a1c53c4b48db69be737f501e9def7ab9bf9e53
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001142619500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 08:29:09 EDT 2025
Sat Nov 29 02:59:09 EST 2025
Tue Nov 18 22:08:26 EST 2025
Wed Aug 27 02:14:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-cf7ce19aba866cc4f68a8716ae1a1c53c4b48db69be737f501e9def7ab9bf9e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3190-3806
0000-0002-6453-0786
PQID 2890104017
PQPubID 85454
PageCount 14
ParticipantIDs proquest_journals_2890104017
crossref_citationtrail_10_1109_TVT_2023_3284915
crossref_primary_10_1109_TVT_2023_3284915
ieee_primary_10148803
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
Strum (ref34) 2001
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Wimalajeewa (ref32) 2013
References_xml – ident: ref5
  doi: 10.1109/29.32276
– ident: ref38
  doi: 10.1137/080738970
– ident: ref35
  doi: 10.1109/ACCESS.2019.2928130
– ident: ref6
  doi: 10.1109/78.224260
– ident: ref28
  doi: 10.1109/LCOMM.2020.3022455
– ident: ref37
  doi: 10.1137/080716542
– ident: ref41
  doi: 10.1109/29.60109
– ident: ref15
  doi: 10.1109/TSP.2017.2736493
– ident: ref18
  doi: 10.1109/LSP.2015.2409153
– ident: ref19
  doi: 10.1109/ICASSP.2013.6638403
– ident: ref10
  doi: 10.1109/TAES.2008.4655353
– ident: ref31
  doi: 10.1109/TSP.2017.2739105
– ident: ref29
  doi: 10.1109/ACCESS.2018.2813014
– year: 2013
  ident: ref32
  article-title: Recovery of sparse matrices via matrix sketching
– ident: ref22
  doi: 10.1109/SAM48682.2020.9104376
– ident: ref43
  doi: 10.1049/ip-f-2.1993.0005
– ident: ref1
  doi: 10.1109/79.526899
– ident: ref11
  doi: 10.1109/TAP.1968.1139138
– ident: ref17
  doi: 10.1109/TSP.2010.2089682
– ident: ref33
  doi: 10.1109/CACSD.2004.1393891
– ident: ref21
  doi: 10.1109/TSP.2018.2872012
– ident: ref25
  doi: 10.1109/ACCESS.2021.3092529
– ident: ref9
  doi: 10.1109/78.485927
– ident: ref40
  doi: 10.1109/TSP.2009.2016892
– ident: ref27
  doi: 10.1109/JSTSP.2016.2627184
– ident: ref3
  doi: 10.1109/CIE-Radar.2011.6159937
– ident: ref42
  doi: 10.1109/TSP.2016.2626255
– ident: ref23
  doi: 10.1109/TCSII.2020.3025629
– ident: ref14
  doi: 10.1109/BenMAS.2014.7529468
– ident: ref24
  doi: 10.1109/LSP.2021.3130018
– ident: ref20
  doi: 10.1109/ICDSP.2018.8631640
– ident: ref36
  doi: 10.1109/TPAMI.2012.271
– ident: ref2
  doi: 10.1002/0471221082
– ident: ref39
  doi: 10.1137/S0895479896303430
– ident: ref7
  doi: 10.1109/78.599939
– ident: ref12
  doi: 10.1109/ISCAS.2008.4541350
– ident: ref13
  doi: 10.1109/TSP.2010.2049264
– ident: ref30
  doi: 10.1109/LSP.2021.3099074
– ident: ref4
  doi: 10.1109/TAP.1986.1143830
– ident: ref26
  doi: 10.1109/JSEN.2016.2567422
– ident: ref8
  doi: 10.1109/7.670322
– year: 2001
  ident: ref34
  article-title: A Matlab Toolbox for Optimization Over Symmetric Cones
– ident: ref16
  doi: 10.1109/ACSSC.2010.5757766
SSID ssj0014491
Score 2.4696805
Snippet The coprime planar array (CPPA) can obtain a larger virtual aperture using the sum-difference co-array (SDCA). Nonetheless, the holes in the SDCA always cause...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Apertures
Arrays
Complexity
Computational complexity
Coprime planar array (CPPA)
Direction-of-arrival estimation
Estimation
Iterative methods
Mathematical analysis
matrix completion
Optimization
Recovery
Regularization
Signal processing algorithms
Sparse matrices
sparse matrix recovery
Sparsity
Transmission line matrix methods
two-dimensional directional of arrival (DOA) estimation
Title Two-Dimensional DOA estimation via matrix completion and sparse matrix recovery for coprime planar array
URI https://ieeexplore.ieee.org/document/10148803
https://www.proquest.com/docview/2890104017
Volume 72
WOSCitedRecordID wos001142619500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxHlJQ8sDGmTOo3jEQEVU8VQULfo7JwFUkmrtDz67_E5aVUJgcQWJbYV5bPPdznf9zF2ZQWikFoEIQoIYjAiAGmiQCRRmlvakq32YhNyMEhHI_VYF6v7WhhE9IfPsE2XPpefT8w7_SrrkK6sm29ik21KmVTFWquUQRzX8niRW8HOL1jmJEPVGT4P2yQT3hbOGCtSwF3bg7yoyg9L7LeX_t4_X2yf7dZ-JL-pgD9gG1gcsp01dsEj9jL8nAR3xN5fMW9wFwdyItWoqhX5xyvwN2Lo_-L-YDn6u1Dk3FmZcobLhxQzuwm_4M6_dS2nJAjAp2MooORQlrBosqf-_fD2IaiFFQLTVd15YKw0GCnQkCaJMbFNUqDACTCCyPSEiXWc5jpRGqWQthdGqHK0ErTSVmFPHLNGMSnwhHEDEIMWXV_N4EaBMDfOx1Qh2tg5N6LFOstPnZmadZzEL8aZjz5ClTlwMgInq8FpsetVj2nFuPFH2yaBsdauwqHFzpdwZvWanGWUUnXBpzNBp790O2PbNHpVanjOGvPyHS_YlvmYv87KSz_dvgEwa9Si
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VigQ90PJRsS2lPvTCIbvJ2pvEx6qAqKCrHlLELRo7Y4FEs6vs8vXv63GyaCUEUm9RYidRnj2eyXjeA_jmJJHMjIxikhgptDLCzCaRTJO8crwkOxPEJrLxOL-81L-7YvVQC0NEYfMZ9fkw5PKrib3lX2UD1pX1402uwNuRUsO4Ldd6Shoo1QnkJX4Oe89gkZWM9aC4KPosFN6X3hxr1sBdWoWCrMozWxwWmJP3__lqH2Cz8yTF9xb6LXhD9Ta8W-IX3IGr4n4SHTF_f8u9IXwkKJhWo61XFHfXKP4yR_-DCFvLKZzFuhLezjQzWlzkqNkP-UfhPVzfcsqSAGJ6gzU2ApsGH3fhz8lx8eM06qQVIjvUw3lkXWYp0WgwT1NrlUtz5NAJKcHEjqRVRuWVSbWhTGZuFCekK3IZGm2cppH8CKv1pKY9EBZRoZHDUM_g74JxZb2XqWNyyrs3sgeDxacubcc7zvIXN2WIP2JdenBKBqfswOnB4VOPacu58UrbXQZjqV2LQw_2F3CW3ayclZxU9eGnN0KfXuj2FdZPi1_n5fnP8dln2OAntYWH-7A6b27pC6zZu_n1rDkIQ-8fZmfX6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Dimensional+DOA+estimation+via+matrix+completion+and+sparse+matrix+recovery+for+coprime+planar+array&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Liu%2C+Donghe&rft.au=Zhao%2C+Yongbo&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0018-9545&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTVT.2023.3284915&rft.externalDocID=10148803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon