CM-AVAE: Cross-Modal Adversarial Variational Autoencoder for Visual-to-Tactile Data Generation

Vibration acceleration signals allow humans to perceive the surface characteristics of textures during tool-surface interactions. However, acquiring acceleration signals requires a specialized system, which is relatively expensive. Conversely, visual images are more accessible than acceleration sign...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 9; no. 6; pp. 5214 - 5221
Main Authors: Xi, Qiyuan, Wang, Fei, Tao, Liangze, Zhang, Hanjing, Jiang, Xun, Wu, Juan
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vibration acceleration signals allow humans to perceive the surface characteristics of textures during tool-surface interactions. However, acquiring acceleration signals requires a specialized system, which is relatively expensive. Conversely, visual images are more accessible than acceleration signals, and generative models can convert visual images into vibration acceleration signals. Utilizing generative models to generate vibration acceleration signals from visual data circumvents the need for time-consuming actual measurements. Furthermore, this approach can be applied to robot-related tasks. This letter presents a cross-modal adversarial variational autoencoder (CM-AVAE) for visual-to-tactile data generation. Our model incorporates latent space learning from variational autoencoders (VAEs) into generative adversarial networks (GANs) and maps the generator's decoder feature vectors to the discriminator. In addition, a public dataset is chosen to train the model, and relevant evaluation metrics are established to evaluate the model's generated results. The results generated by the CM-AVAE model show significant improvement in objective experiments compared to the baseline models. Furthermore, subjective experimental outcomes also surpass those of the baseline models. Ablation study shows that CM-AVAE introduces latent space learning and maps the decoder feature vectors in the generator to the discriminator, significantly improving the quality of cross-modal data generation.
AbstractList Vibration acceleration signals allow humans to perceive the surface characteristics of textures during tool-surface interactions. However, acquiring acceleration signals requires a specialized system, which is relatively expensive. Conversely, visual images are more accessible than acceleration signals, and generative models can convert visual images into vibration acceleration signals. Utilizing generative models to generate vibration acceleration signals from visual data circumvents the need for time-consuming actual measurements. Furthermore, this approach can be applied to robot-related tasks. This letter presents a cross-modal adversarial variational autoencoder (CM-AVAE) for visual-to-tactile data generation. Our model incorporates latent space learning from variational autoencoders (VAEs) into generative adversarial networks (GANs) and maps the generator's decoder feature vectors to the discriminator. In addition, a public dataset is chosen to train the model, and relevant evaluation metrics are established to evaluate the model's generated results. The results generated by the CM-AVAE model show significant improvement in objective experiments compared to the baseline models. Furthermore, subjective experimental outcomes also surpass those of the baseline models. Ablation study shows that CM-AVAE introduces latent space learning and maps the decoder feature vectors in the generator to the discriminator, significantly improving the quality of cross-modal data generation.
Author Wu, Juan
Jiang, Xun
Tao, Liangze
Xi, Qiyuan
Wang, Fei
Zhang, Hanjing
Author_xml – sequence: 1
  givenname: Qiyuan
  orcidid: 0009-0005-1066-5596
  surname: Xi
  fullname: Xi, Qiyuan
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Fei
  orcidid: 0000-0003-3211-1701
  surname: Wang
  fullname: Wang, Fei
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Liangze
  orcidid: 0009-0001-4475-2824
  surname: Tao
  fullname: Tao, Liangze
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 4
  givenname: Hanjing
  orcidid: 0009-0003-4697-2286
  surname: Zhang
  fullname: Zhang, Hanjing
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 5
  givenname: Xun
  orcidid: 0009-0007-0118-3311
  surname: Jiang
  fullname: Jiang, Xun
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 6
  givenname: Juan
  orcidid: 0000-0001-8886-9920
  surname: Wu
  fullname: Wu, Juan
  email: juanwuseu@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
BookMark eNp9kEtLw0AUhQepYK3du3ARcJ0670nchVir0CJI7dIwSW5gSszUmangvzdpXRQXrs7lcr77OJdo1NkOELomeEYITu-Wr9mMYspnjCWKcHmGxpQpFTMl5eikvkBT77cYYyKoYqkYo_d8FWebbH4f5c56H69srdsoq7_Aee1MX28GCcZ2Q38fLHSVrcFFjXXRxvi9buNg47WugmkhetBBRwvowB2YK3Te6NbD9Fcn6O1xvs6f4uXL4jnPlnFFUxriCgCnpaJpKYioG0pl0iRJU6YNF6ROKo0FoXWaKJVgCUyWTIDQnCsCwHkCbIJuj3N3zn7uwYdia_euP9kXDHMuBaaY9C58dFXDrw6aYufMh3bfBcHFEGTRB1kMQRa_QfaI_INUJhxeC06b9j_w5ggaADjZw1NJlGQ_x1-AkQ
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_TIM_2025_3604922
crossref_primary_10_1016_j_image_2025_117338
crossref_primary_10_1109_JIOT_2025_3548144
Cites_doi 10.1145/3126686.3126723
10.1016/j.cag.2021.09.007
10.1016/j.cmpb.2022.107024
10.1109/LRA.2021.3095925
10.1109/CVPR.2019.01086
10.1109/ICRA.2019.8793763
10.1109/ICRA.2017.7989116
10.1145/3422622
10.1109/TMM.2021.3119860
10.1109/ISMAR-Adjunct57072.2022.00174
10.1561/2200000056
10.1007/s12555-022-0358-3
10.1109/CVPR.2017.632
10.1109/WHC.2015.7177716
10.1007/978-3-319-24574-4_28
10.1049/ccs2.12008
10.1007/978-3-030-58539-6_43
10.1007/s10710-017-9314-z
10.1109/TMMS.1970.299963
10.1109/TIP.2022.3219228
10.1037/0096-1523.12.4.517
10.1109/TOH.2016.2625787
10.1109/ICRA48891.2023.10160373
10.1109/HAPTICS.2014.6775475
10.1109/ICCV51070.2023.00648
10.1007/978-3-319-93399-3_3
10.1109/TASSP.1984.1164317
10.1109/TASE.2020.2971713
10.1609/aaai.v34i07.6701
10.1109/ICASSP49357.2023.10094745
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2024.3387146
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 5221
ExternalDocumentID 10_1109_LRA_2024_3387146
10496176
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62073073
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BE2022160
  funderid: 10.13039/501100004608
– fundername: National Key Research and Development Program of China
  grantid: 2023YFC3603602
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-cee09b729b515df2268f88fb9f451d8ca0512d9877806e36b35e5a4471ee448e3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001209593700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Mon Jun 30 15:12:12 EDT 2025
Tue Nov 18 21:27:59 EST 2025
Sat Nov 29 06:03:30 EST 2025
Wed Aug 27 02:06:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-cee09b729b515df2268f88fb9f451d8ca0512d9877806e36b35e5a4471ee448e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8886-9920
0009-0007-0118-3311
0009-0005-1066-5596
0000-0003-3211-1701
0009-0003-4697-2286
0009-0001-4475-2824
PQID 3044650201
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_3044650201
ieee_primary_10496176
crossref_primary_10_1109_LRA_2024_3387146
crossref_citationtrail_10_1109_LRA_2024_3387146
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Shi (ref24) 2019
ref26
ref25
ref20
Truong (ref15) 2023
ref22
ref21
Zhong (ref4) 2023
ref28
ref27
ref8
Oord (ref23) 2016
ref7
ref9
Kingma (ref29) 2013
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.1145/3126686.3126723
– start-page: 1618
  volume-title: Proc. Conf. Robot Learn.
  year: 2023
  ident: ref4
  article-title: Touching a nerf: Leveraging neural radiance fields for tactile sensory data generation
– ident: ref26
  doi: 10.1016/j.cag.2021.09.007
– ident: ref32
  doi: 10.1016/j.cmpb.2022.107024
– ident: ref30
  doi: 10.1109/LRA.2021.3095925
– ident: ref11
  doi: 10.1109/CVPR.2019.01086
– ident: ref19
  doi: 10.1109/ICRA.2019.8793763
– ident: ref2
  doi: 10.1109/ICRA.2017.7989116
– ident: ref12
  doi: 10.1145/3422622
– ident: ref8
  doi: 10.1109/TMM.2021.3119860
– ident: ref9
  doi: 10.1109/ISMAR-Adjunct57072.2022.00174
– ident: ref13
  doi: 10.1561/2200000056
– ident: ref3
  doi: 10.1007/s12555-022-0358-3
– year: 2013
  ident: ref29
  article-title: Auto-encoding variational Bayes
– ident: ref21
  doi: 10.1109/CVPR.2017.632
– ident: ref7
  doi: 10.1109/WHC.2015.7177716
– ident: ref17
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref31
  doi: 10.1049/ccs2.12008
– ident: ref33
  doi: 10.1007/978-3-030-58539-6_43
– ident: ref5
  doi: 10.1007/s10710-017-9314-z
– ident: ref1
  doi: 10.1109/TMMS.1970.299963
– ident: ref16
  doi: 10.1109/TIP.2022.3219228
– ident: ref22
  doi: 10.1037/0096-1523.12.4.517
– ident: ref18
  doi: 10.1109/TOH.2016.2625787
– ident: ref28
  doi: 10.1109/ICRA48891.2023.10160373
– ident: ref6
  doi: 10.1109/HAPTICS.2014.6775475
– ident: ref27
  doi: 10.1109/ICCV51070.2023.00648
– ident: ref10
  doi: 10.1007/978-3-319-93399-3_3
– ident: ref35
  doi: 10.1109/TASSP.1984.1164317
– ident: ref20
  doi: 10.1109/TASE.2020.2971713
– ident: ref34
  doi: 10.1609/aaai.v34i07.6701
– year: 2023
  ident: ref15
  article-title: Text-guided real-world-to-3D generative models with real-time rendering on mobile devices
  publication-title: Authorea Preprints
– year: 2016
  ident: ref23
  article-title: WaveNet: A generative model for raw audio
– volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref24
  article-title: Variational mixture-of-experts autoencoders for multi-modal deep generative models
– ident: ref14
  doi: 10.1109/ICASSP49357.2023.10094745
SSID ssj0001527395
Score 2.285171
Snippet Vibration acceleration signals allow humans to perceive the surface characteristics of textures during tool-surface interactions. However, acquiring...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5214
SubjectTerms Ablation
cross-modal learning
Data models
Discriminators
Generative adversarial networks
generative adversarial networks (GANs)
Generators
Haptic interfaces
Modal data
Signal generation
Solid modeling
Surface properties
variational autoencoders (VAEs)
Vectors
Vibration
Vibration acceleration signals
Vibration perception
Vibrations
Visual signals
Visualization
Title CM-AVAE: Cross-Modal Adversarial Variational Autoencoder for Visual-to-Tactile Data Generation
URI https://ieeexplore.ieee.org/document/10496176
https://www.proquest.com/docview/3044650201
Volume 9
WOSCitedRecordID wos001209593700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RigEG3ojykgcWBpe0zsNmi0oRA0UIQdSJyLEdqVLVoDZh5Lfjc1KohEBiSgafZfls33c-33cAF1LwMPS0pJHII-orJuw5mPlUM59pxWWQuyzX5D56eODjsXhsktVdLowxxj0-M138dbF8XagKr8rsDveFtbhhC1pRFNbJWt8XKkglJoJlKNITV_dPsXUA-37XumGRg7grpsfVUvlxADurcrv9z_HswFYDH0lc63sX1sxsDzZXSAX34XUwonESD6_JAIdBR4VGCSy8vJC43EiCn_oOkMRVWSCXpTZzYvErSSaLSk5pWdBnTHmYGnIjS0lqdmqUOYCX2-Hz4I42VRSo6ot-Sa0V9ERmMXRmoYvOLdziOed5JnI_6GmupN2WfS14FHEvNCzMWGAC6VujZYz13Qw7hPasmJkjICLIlGJM-8b6hYHIJLIN5hlWU-daat6Bq-UEp6qhGMdKF9PUuRqeSK1KUlRJ2qikA5dfEm81vcYfbQ9QBSvt6tnvwOlSiWmzARcpw0B1YLFw7_gXsRPYwN7rZ1-n0C7nlTmDdfVeThbzc2iNPobnboV9AuYUzS8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB0tLBJwYFk-RIFlfdjLHgwhthObW1RAoG0rtCoVJyLHdiSkqkFtyu_H46RLpRVInJKDR7Y8tueNx_MG4JdWMkkiq2mqypRyw5Q_BwtOLePMGqlFGbJcR710MJAPD-quTVYPuTDOufD4zJ3ib4jl28rM8arM73CuvMVNVuCr4DyOmnSttysVJBNTYhGMjNRZ72_mXcCYn3pHLA0gd8n4hGoq_x3Bwa5cf_vkiLZhqwWQJGs0_h2-uMkObC7RCu7CY7dPs1F2dUG6OAzaryxKYOnlmcYFR0b4aW4BSTavK2SztG5KPIIlo6fZXI9pXdEhJj2MHbnUtSYNPzXK7MH99dWwe0PbOgrUxCquqbeDkSo8ii48eLGlB1yylLIsVMnFuZVG-40ZWyXTVEaJY0nBhBOae7PlnPfeHNuH1Uk1cQdAlCiMYcxy5z1DoQqNfINlgfXUpdVWduBsMcG5aUnGsdbFOA_ORqRyr5IcVZK3KunA738Szw3Bxgdt91AFS-2a2e_A8UKJebsFZznDULXwaPj88B2xn7B-M-z38t7t4M8RbGBPzSOwY1itp3P3A9bMS_00m56EdfYK4BjPRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CM-AVAE%3A+Cross-Modal+Adversarial+Variational+Autoencoder+for+Visual-to-Tactile+Data+Generation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Xi%2C+Qiyuan&rft.au=Wang%2C+Fei&rft.au=Tao%2C+Liangze&rft.au=Zhang%2C+Hanjing&rft.date=2024-06-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=9&rft.issue=6&rft.spage=5214&rft.epage=5221&rft_id=info:doi/10.1109%2FLRA.2024.3387146&rft.externalDocID=10496176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon