Pebble-depth

In this paper we introduce a new feasible notion of Bennett's logical depth based on pebble transducers. This notion is defined based on the difference between the minimal length descriptional complexity of prefixes of infinite sequences from the perspective of finite-state transducers and pebb...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 1009; s. 114638
Hlavní autori: Jordon, Liam, Maguire, Phil, Moser, Philippe
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 12.09.2024
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper we introduce a new feasible notion of Bennett's logical depth based on pebble transducers. This notion is defined based on the difference between the minimal length descriptional complexity of prefixes of infinite sequences from the perspective of finite-state transducers and pebble transducers. Our notion of pebble-depth satisfies the four fundamental properties of depth: i.e. deep sequences exist, trivial sequences are not deep, random sequences are not deep, and the existence of a slow growth law type result. We also compare pebble-depth to other depth notions based on finite-state transducers, pushdown compressors, and the Lempel-Ziv 78 compression algorithm. We first demonstrate how there exists a normal pebble-deep sequence even though there is no normal finite-state-deep sequence. We next build a sequence that has a pebble-depth level of roughly 1, a pushdown-depth level of roughly 1/2 and a finite-state-depth level of roughly 0. We then build a sequence that has a pebble-depth level of roughly 1/2 and a Lempel-Ziv-depth level of roughly 0.
AbstractList In this paper we introduce a new feasible notion of Bennett's logical depth based on pebble transducers. This notion is defined based on the difference between the minimal length descriptional complexity of prefixes of infinite sequences from the perspective of finite-state transducers and pebble transducers. Our notion of pebble-depth satisfies the four fundamental properties of depth: i.e. deep sequences exist, trivial sequences are not deep, random sequences are not deep, and the existence of a slow growth law type result. We also compare pebble-depth to other depth notions based on finite-state transducers, pushdown compressors, and the Lempel-Ziv 78 compression algorithm. We first demonstrate how there exists a normal pebble-deep sequence even though there is no normal finite-state-deep sequence. We next build a sequence that has a pebble-depth level of roughly 1, a pushdown-depth level of roughly 1/2 and a finite-state-depth level of roughly 0. We then build a sequence that has a pebble-depth level of roughly 1/2 and a Lempel-Ziv-depth level of roughly 0.
ArticleNumber 114638
Author Jordon, Liam
Maguire, Phil
Moser, Philippe
Author_xml – sequence: 1
  givenname: Liam
  surname: Jordon
  fullname: Jordon, Liam
  email: liam.jordon@mu.ie
– sequence: 2
  givenname: Phil
  surname: Maguire
  fullname: Maguire, Phil
  email: phil.maguire@mu.ie
– sequence: 3
  givenname: Philippe
  surname: Moser
  fullname: Moser, Philippe
  email: pmoser@cs.nuim.ie
BookMark eNp9j8tqwzAUREVJoE7SD-hHyNXVyxJdldAXBNpFsxaydEVtUjtIptC_r4O77mxmdYY5G7IaxgEJuQVWAwN919dTKDVnXNYAUgtzRSowjaWcW7kiFRNMUmEbdU02pfRsjmp0RXbv2LYnpBHP0-eOrJM_Fbz56y05Pj1-7F_o4e35df9woIFbPtGgRLTAk2wD5xqUUVJJ3iBKb0xKKXihA4smRu8bmbSy2oDyIkgbTYqt2BJYdkMeS8mY3Dl3Xz7_OGDuouN6N-u4i45bdGbmfmFwPvbdYXYldDgEjF3GMLk4dv_Qvx41Upo
Cites_doi 10.1007/BF03019651
10.1109/TIT.1978.1055934
10.1109/TIT.1959.1057537
10.1007/s00224-010-9267-6
10.1016/j.tcs.2012.10.045
10.1006/inco.1995.1009
10.1016/S0304-3975(96)00119-3
10.1016/j.tcs.2013.01.019
10.1006/inco.1999.2794
10.1016/j.ic.2015.11.003
10.1016/S0304-3975(03)00244-5
10.1016/j.ic.2015.02.001
10.1016/j.ic.2019.104483
10.1016/j.ic.2023.105025
10.1007/BF00289514
10.1016/j.tcs.2005.11.033
10.1016/S0022-0000(02)00030-2
10.1007/s00236-015-0224-3
10.1051/ita/2011001
10.1016/j.tcs.2011.06.021
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2024.114638
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
ExternalDocumentID 10_1016_j_tcs_2024_114638
S0304397524002536
GrantInformation_xml – fundername: Irish Research Council
  grantid: GOIPG/2017/1200
  funderid: https://doi.org/10.13039/501100002081
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABVKL
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
LG9
M26
M41
R2-
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c292t-c53d912f4bc226158545427ee4a88fffca36c0d8ddaa74f6596815a3c49d8fdb3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001261403300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sat Nov 29 05:49:21 EST 2025
Sat Jul 27 15:43:27 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Logical depth
Pebble transducer
Compression algorithms
Kolmogorov complexity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-c53d912f4bc226158545427ee4a88fffca36c0d8ddaa74f6596815a3c49d8fdb3
OpenAccessLink https://doi.org/10.1016/j.tcs.2024.114638
ParticipantIDs crossref_primary_10_1016_j_tcs_2024_114638
elsevier_sciencedirect_doi_10_1016_j_tcs_2024_114638
PublicationCentury 2000
PublicationDate 2024-09-12
PublicationDateYYYYMMDD 2024-09-12
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-12
  day: 12
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Moser (br0050) 2020; 271
Ziv, Lempel (br0140) 1978; 24
Jordon, Moser (br0070) 2023; 292
Geffert, Istonová (br0170) 2010; 44
Lathrop, Lutz (br0020) 1999; 153
Engelfriet, Maneth (br0100) 2002; vol. 2420
Huffman (br0260) 1959; 5
Sheinwald, Lempel, Ziv (br0220) 1995; 116
Globerman, Harel (br0080) 1996; 169
Calude, Staiger, Stephan (br0210) 2016; 247
Jordon, Moser (br0130) 2020; vol. 12011
Carton, Heiber (br0300) 2015; 241
Doty, Moser (br0060) 2007; vol. 4497
Moser (br0040) 2013; 477
Nies (br0150) 2009
Calude, Salomaa, Roblot (br0200) 2011; 412
Becher, Heiber (br0230) 2013; 477
Bojańczyk (br0110) 2022
Lhote (br0120) 2020
Bennett (br0010) 1988
Milo, Suciu, Vianu (br0090) 2003; 66
Dai, Lathrop, Lutz, Mayordomo (br0240) 2004; 310
Antunes, Fortnow, van Melkebeek, Vinodchandran (br0030) 2006; 354
Engelfriet (br0180) 2015; 52
Jordon (br0290) 2022
Kohavi (br0270) 1978
Schnorr, Stimm (br0250) 1972; 1
Borel (br0160) 1909; 27
Lathrop, Strauss (br0280) 1997
Mayordomo, Moser, Perifel (br0190) 2011; 48
Calude (10.1016/j.tcs.2024.114638_br0200) 2011; 412
Bennett (10.1016/j.tcs.2024.114638_br0010) 1988
Becher (10.1016/j.tcs.2024.114638_br0230) 2013; 477
Kohavi (10.1016/j.tcs.2024.114638_br0270) 1978
Ziv (10.1016/j.tcs.2024.114638_br0140) 1978; 24
Engelfriet (10.1016/j.tcs.2024.114638_br0180) 2015; 52
Doty (10.1016/j.tcs.2024.114638_br0060) 2007; vol. 4497
Sheinwald (10.1016/j.tcs.2024.114638_br0220) 1995; 116
Dai (10.1016/j.tcs.2024.114638_br0240) 2004; 310
Nies (10.1016/j.tcs.2024.114638_br0150) 2009
Calude (10.1016/j.tcs.2024.114638_br0210) 2016; 247
Engelfriet (10.1016/j.tcs.2024.114638_br0100) 2002; vol. 2420
Jordon (10.1016/j.tcs.2024.114638_br0130) 2020; vol. 12011
Schnorr (10.1016/j.tcs.2024.114638_br0250) 1972; 1
Huffman (10.1016/j.tcs.2024.114638_br0260) 1959; 5
Moser (10.1016/j.tcs.2024.114638_br0040) 2013; 477
Carton (10.1016/j.tcs.2024.114638_br0300) 2015; 241
Antunes (10.1016/j.tcs.2024.114638_br0030) 2006; 354
Globerman (10.1016/j.tcs.2024.114638_br0080) 1996; 169
Bojańczyk (10.1016/j.tcs.2024.114638_br0110) 2022
Jordon (10.1016/j.tcs.2024.114638_br0290) 2022
Lathrop (10.1016/j.tcs.2024.114638_br0020) 1999; 153
Milo (10.1016/j.tcs.2024.114638_br0090) 2003; 66
Lhote (10.1016/j.tcs.2024.114638_br0120) 2020
Jordon (10.1016/j.tcs.2024.114638_br0070) 2023; 292
Geffert (10.1016/j.tcs.2024.114638_br0170) 2010; 44
Borel (10.1016/j.tcs.2024.114638_br0160) 1909; 27
Lathrop (10.1016/j.tcs.2024.114638_br0280) 1997
Moser (10.1016/j.tcs.2024.114638_br0050) 2020; 271
Mayordomo (10.1016/j.tcs.2024.114638_br0190) 2011; 48
References_xml – volume: vol. 4497
  start-page: 228
  year: 2007
  end-page: 237
  ident: br0060
  article-title: Feasible depth
  publication-title: Computation and Logic in the Real World, Third Conference on Computability in Europe, CiE 2007, Proceedings
– year: 2009
  ident: br0150
  article-title: Computability and Randomness
– volume: 477
  start-page: 109
  year: 2013
  end-page: 116
  ident: br0230
  article-title: Normal numbers and finite automata
  publication-title: Theor. Comput. Sci.
– volume: 169
  start-page: 161
  year: 1996
  end-page: 184
  ident: br0080
  article-title: Complexity results for two-way and multi-pebble automata and their logics
  publication-title: Theor. Comput. Sci.
– volume: 66
  start-page: 66
  year: 2003
  end-page: 97
  ident: br0090
  article-title: Typechecking for XML transformers
  publication-title: J. Comput. Syst. Sci.
– year: 1978
  ident: br0270
  article-title: Switching and Finite Automata Theory
– volume: vol. 12011
  start-page: 187
  year: 2020
  end-page: 198
  ident: br0130
  article-title: On the difference between finite-state and pushdown depth
  publication-title: 46th International Conference on Current Trends in Theory and Practice of Informatics, SOFSEM 2020, Proceedings
– volume: 354
  start-page: 391
  year: 2006
  end-page: 404
  ident: br0030
  article-title: Computational depth: concept and applications
  publication-title: Theor. Comput. Sci.
– volume: vol. 2420
  start-page: 234
  year: 2002
  end-page: 244
  ident: br0100
  article-title: Two-way finite state transducers with nested pebbles
  publication-title: Mathematical Foundations of Computer Science 2002, 27th International Symposium, MFCS 2002, Proceedings
– volume: 1
  start-page: 345
  year: 1972
  end-page: 359
  ident: br0250
  article-title: Endliche Automaten und Zufallsfolgen
  publication-title: Acta Inform.
– volume: 292
  year: 2023
  ident: br0070
  article-title: Pushdown and Lempel-Ziv depth
  publication-title: Inf. Comput.
– volume: 412
  start-page: 5668
  year: 2011
  end-page: 5677
  ident: br0200
  article-title: Finite state complexity
  publication-title: Theor. Comput. Sci.
– start-page: 1
  year: 2022
  end-page: 27
  ident: br0110
  article-title: Transducers of polynomial growth
  publication-title: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '22
– start-page: 227
  year: 1988
  end-page: 257
  ident: br0010
  article-title: Logical depth and physical complexity
  publication-title: The Universal Turing Machine, A Half-Century Survey
– volume: 116
  start-page: 128
  year: 1995
  end-page: 133
  ident: br0220
  article-title: On encoding and decoding with two-way head machines
  publication-title: Inf. Comput.
– year: 2022
  ident: br0290
  article-title: An investigation of feasible logical depth and complexity measures via automata and compression algorithms
– volume: 247
  start-page: 23
  year: 2016
  end-page: 36
  ident: br0210
  article-title: Finite state incompressible infinite sequences
  publication-title: Inf. Comput.
– volume: 5
  start-page: 41
  year: 1959
  end-page: 59
  ident: br0260
  article-title: Canonical forms for information-lossless finite-state logical machines
  publication-title: IRE Trans. Inf. Theory
– volume: 52
  start-page: 559
  year: 2015
  end-page: 571
  ident: br0180
  article-title: Two-way pebble transducers for partial functions and their composition
  publication-title: Acta Inform.
– volume: 241
  start-page: 264
  year: 2015
  end-page: 276
  ident: br0300
  article-title: Normality and two-way automata
  publication-title: Inf. Comput.
– volume: 24
  start-page: 530
  year: 1978
  end-page: 536
  ident: br0140
  article-title: Compression of individual sequences via variable-rate encoding
  publication-title: IEEE Trans. Inf. Theory
– volume: 27
  start-page: 247
  year: 1909
  end-page: 271
  ident: br0160
  article-title: Les probabilités dénombrables et leurs applications arithmétiques
  publication-title: Rend. Circ. Mat. Palermo
– volume: 477
  start-page: 96
  year: 2013
  end-page: 108
  ident: br0040
  article-title: On the polynomial depth of various sets of random strings
  publication-title: Theor. Comput. Sci.
– volume: 48
  start-page: 731
  year: 2011
  end-page: 766
  ident: br0190
  article-title: Polylog space compression, pushdown compression, and Lempel-Ziv are incomparable
  publication-title: Theory Comput. Syst.
– volume: 44
  start-page: 507
  year: 2010
  end-page: 523
  ident: br0170
  article-title: Translation from classical two-way automata to pebble two-way automata
  publication-title: RAIRO Theor. Inform. Appl.
– volume: 271
  year: 2020
  ident: br0050
  article-title: Polylog depth, highness and lowness for E
  publication-title: Inf. Comput.
– volume: 153
  start-page: 139
  year: 1999
  end-page: 172
  ident: br0020
  article-title: Recursive computational depth
  publication-title: Inf. Comput.
– volume: 310
  start-page: 1
  year: 2004
  end-page: 33
  ident: br0240
  article-title: Finite-state dimension
  publication-title: Theor. Comput. Sci.
– start-page: 703
  year: 2020
  end-page: 712
  ident: br0120
  article-title: Pebble minimization of polyregular functions
  publication-title: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Proceedings, LICS '20
– start-page: 123
  year: 1997
  end-page: 135
  ident: br0280
  article-title: A universal upper bound on the performance of the Lempel-Ziv algorithm on maliciously-constructed data
  publication-title: Compression and Complexity of SEQUENCES 1997, Proceedings
– volume: 27
  start-page: 247
  issue: 1
  year: 1909
  ident: 10.1016/j.tcs.2024.114638_br0160
  article-title: Les probabilités dénombrables et leurs applications arithmétiques
  publication-title: Rend. Circ. Mat. Palermo
  doi: 10.1007/BF03019651
– volume: 24
  start-page: 530
  issue: 5
  year: 1978
  ident: 10.1016/j.tcs.2024.114638_br0140
  article-title: Compression of individual sequences via variable-rate encoding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1978.1055934
– volume: 5
  start-page: 41
  issue: 5
  year: 1959
  ident: 10.1016/j.tcs.2024.114638_br0260
  article-title: Canonical forms for information-lossless finite-state logical machines
  publication-title: IRE Trans. Inf. Theory
  doi: 10.1109/TIT.1959.1057537
– volume: 48
  start-page: 731
  issue: 4
  year: 2011
  ident: 10.1016/j.tcs.2024.114638_br0190
  article-title: Polylog space compression, pushdown compression, and Lempel-Ziv are incomparable
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-010-9267-6
– volume: 477
  start-page: 96
  year: 2013
  ident: 10.1016/j.tcs.2024.114638_br0040
  article-title: On the polynomial depth of various sets of random strings
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2012.10.045
– volume: 116
  start-page: 128
  issue: 1
  year: 1995
  ident: 10.1016/j.tcs.2024.114638_br0220
  article-title: On encoding and decoding with two-way head machines
  publication-title: Inf. Comput.
  doi: 10.1006/inco.1995.1009
– volume: vol. 2420
  start-page: 234
  year: 2002
  ident: 10.1016/j.tcs.2024.114638_br0100
  article-title: Two-way finite state transducers with nested pebbles
– volume: 169
  start-page: 161
  issue: 2
  year: 1996
  ident: 10.1016/j.tcs.2024.114638_br0080
  article-title: Complexity results for two-way and multi-pebble automata and their logics
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(96)00119-3
– year: 2022
  ident: 10.1016/j.tcs.2024.114638_br0290
– volume: 477
  start-page: 109
  year: 2013
  ident: 10.1016/j.tcs.2024.114638_br0230
  article-title: Normal numbers and finite automata
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2013.01.019
– volume: 153
  start-page: 139
  issue: 1
  year: 1999
  ident: 10.1016/j.tcs.2024.114638_br0020
  article-title: Recursive computational depth
  publication-title: Inf. Comput.
  doi: 10.1006/inco.1999.2794
– start-page: 1
  year: 2022
  ident: 10.1016/j.tcs.2024.114638_br0110
  article-title: Transducers of polynomial growth
– volume: vol. 4497
  start-page: 228
  year: 2007
  ident: 10.1016/j.tcs.2024.114638_br0060
  article-title: Feasible depth
– volume: 247
  start-page: 23
  year: 2016
  ident: 10.1016/j.tcs.2024.114638_br0210
  article-title: Finite state incompressible infinite sequences
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2015.11.003
– volume: 310
  start-page: 1
  issue: 1–3
  year: 2004
  ident: 10.1016/j.tcs.2024.114638_br0240
  article-title: Finite-state dimension
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(03)00244-5
– volume: 241
  start-page: 264
  year: 2015
  ident: 10.1016/j.tcs.2024.114638_br0300
  article-title: Normality and two-way automata
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2015.02.001
– volume: 271
  year: 2020
  ident: 10.1016/j.tcs.2024.114638_br0050
  article-title: Polylog depth, highness and lowness for E
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2019.104483
– volume: 292
  year: 2023
  ident: 10.1016/j.tcs.2024.114638_br0070
  article-title: Pushdown and Lempel-Ziv depth
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2023.105025
– start-page: 703
  year: 2020
  ident: 10.1016/j.tcs.2024.114638_br0120
  article-title: Pebble minimization of polyregular functions
– volume: 1
  start-page: 345
  year: 1972
  ident: 10.1016/j.tcs.2024.114638_br0250
  article-title: Endliche Automaten und Zufallsfolgen
  publication-title: Acta Inform.
  doi: 10.1007/BF00289514
– year: 1978
  ident: 10.1016/j.tcs.2024.114638_br0270
– start-page: 123
  year: 1997
  ident: 10.1016/j.tcs.2024.114638_br0280
  article-title: A universal upper bound on the performance of the Lempel-Ziv algorithm on maliciously-constructed data
– year: 2009
  ident: 10.1016/j.tcs.2024.114638_br0150
– start-page: 227
  year: 1988
  ident: 10.1016/j.tcs.2024.114638_br0010
  article-title: Logical depth and physical complexity
– volume: 354
  start-page: 391
  issue: 3
  year: 2006
  ident: 10.1016/j.tcs.2024.114638_br0030
  article-title: Computational depth: concept and applications
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2005.11.033
– volume: 66
  start-page: 66
  issue: 1
  year: 2003
  ident: 10.1016/j.tcs.2024.114638_br0090
  article-title: Typechecking for XML transformers
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(02)00030-2
– volume: 52
  start-page: 559
  issue: 7–8
  year: 2015
  ident: 10.1016/j.tcs.2024.114638_br0180
  article-title: Two-way pebble transducers for partial functions and their composition
  publication-title: Acta Inform.
  doi: 10.1007/s00236-015-0224-3
– volume: vol. 12011
  start-page: 187
  year: 2020
  ident: 10.1016/j.tcs.2024.114638_br0130
  article-title: On the difference between finite-state and pushdown depth
– volume: 44
  start-page: 507
  issue: 4
  year: 2010
  ident: 10.1016/j.tcs.2024.114638_br0170
  article-title: Translation from classical two-way automata to pebble two-way automata
  publication-title: RAIRO Theor. Inform. Appl.
  doi: 10.1051/ita/2011001
– volume: 412
  start-page: 5668
  issue: 41
  year: 2011
  ident: 10.1016/j.tcs.2024.114638_br0200
  article-title: Finite state complexity
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2011.06.021
SSID ssj0000576
Score 2.4223852
Snippet In this paper we introduce a new feasible notion of Bennett's logical depth based on pebble transducers. This notion is defined based on the difference between...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114638
SubjectTerms Compression algorithms
Kolmogorov complexity
Logical depth
Pebble transducer
Title Pebble-depth
URI https://dx.doi.org/10.1016/j.tcs.2024.114638
Volume 1009
WOSCitedRecordID wos001261403300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211214
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA6-Dir4Ft_swZMS2SaTNjmKKCoqgivsraRJ6ipal90q_nzTJt0WH6CClxICadr5wmQymZkPoV2gyh6NgWLJZYJBJmBbIDCogtYn5Yq2y0Thi-jqine74tqT4A1LOoEoy_jbm-j_K9S2z4JdpM7-Au7RS22HbVvQ7dPCbp8_Av7aJMmjwdr0817T9Ow0UhaV53LY9xtgHUcz8OQeF_fyqfZW342ywXp1SMbl89Dh7ZwyfdP0IBDAJQNC7db6lNri0qmKKxPhaE0OjNOOPBKYEMdKPFKf7bK-wWdd7NwCDwe5KsqiEyjLErtSLh9KXN8UkxVzFQGthNFwHE2SiAmraCcPz4675_XeyiJ3--w_rrqnLiP2Pkz0taXRsB46C2jOm_2tQwfXIhoz2RKaryg1Wl7DLqGZy1EZ3eEymm1iuYJuT447R6fY01dgRQTJsWJUi4CkkChr4wb2XAYMSGQMSM7TNFWShqqtudZSRpCGTIQ8YJIqEJqnOqGraCJ7zswaarVTAjLSXCkIgWvBRaADrhkzgdKUyHW0V_1q3HdVSuIqfO8htnKJC7nETi7rCCphxH6VOfMptsh9P2zjb8M20XS95rbQRD54MdtoSr3m98PBjsf3HVt1RfQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pebble-depth&rft.jtitle=Theoretical+computer+science&rft.au=Jordon%2C+Liam&rft.au=Maguire%2C+Phil&rft.au=Moser%2C+Philippe&rft.date=2024-09-12&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=1009&rft_id=info:doi/10.1016%2Fj.tcs.2024.114638&rft.externalDocID=S0304397524002536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon