A Novel Spatiotemporal Enhanced Convolutional Autoencoder Network for Unsupervised Health Indicator Construction
The health indicator (HI) of rotating machinery affects the reliability and accuracy of its remaining useful life (RUL) prediction. Convolutional autoencoder (CAE) is widely used for HI construction with the advantage of being unsupervised, but it still suffers from two problems: 1) the shallow lear...
Uložené v:
| Vydané v: | IEEE transactions on instrumentation and measurement Ročník 73; s. 1 - 10 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9456, 1557-9662 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The health indicator (HI) of rotating machinery affects the reliability and accuracy of its remaining useful life (RUL) prediction. Convolutional autoencoder (CAE) is widely used for HI construction with the advantage of being unsupervised, but it still suffers from two problems: 1) the shallow learning of local spatial features and the neglect of global temporal features result in poor performance of the constructed HI trend and 2) a non-end-to-end form that requires human involvement, which is time-consuming and labor-intensive. Therefore, a novel unsupervised spatiotemporal enhanced convolutional autoencoder (STECAE) network is proposed in this article, which can directly enhance feature mining on raw data in both temporal and spatial dimensions without any prior knowledge. The STECAE network mainly consists of three components: spatial mining module (SMM), temporal learning module (TLM), and trend compensation mechanism (TCM). SMM enhances the deep mining of local spatial features via deep residual shrinkage module. TLM mines global temporal features through the gate recurrent unit (GRU). TCM acts as a bridge for spatiotemporal connectivity to improve the model's global sensing field and HI's trend performance. The effectiveness of the proposed method is validated through the dataset of rolling bearings and aero engines. The results show that compared to the existing state-of-the-art methods, the HI constructed by the proposed method is closer to 1 in terms of the evaluation metric values and has a lower RUL prediction error. The high-quality HI constructed by the proposed method can provide a reliable basis for RUL prediction. |
|---|---|
| AbstractList | The health indicator (HI) of rotating machinery affects the reliability and accuracy of its remaining useful life (RUL) prediction. Convolutional autoencoder (CAE) is widely used for HI construction with the advantage of being unsupervised, but it still suffers from two problems: 1) the shallow learning of local spatial features and the neglect of global temporal features result in poor performance of the constructed HI trend and 2) a non-end-to-end form that requires human involvement, which is time-consuming and labor-intensive. Therefore, a novel unsupervised spatiotemporal enhanced convolutional autoencoder (STECAE) network is proposed in this article, which can directly enhance feature mining on raw data in both temporal and spatial dimensions without any prior knowledge. The STECAE network mainly consists of three components: spatial mining module (SMM), temporal learning module (TLM), and trend compensation mechanism (TCM). SMM enhances the deep mining of local spatial features via deep residual shrinkage module. TLM mines global temporal features through the gate recurrent unit (GRU). TCM acts as a bridge for spatiotemporal connectivity to improve the model’s global sensing field and HI’s trend performance. The effectiveness of the proposed method is validated through the dataset of rolling bearings and aero engines. The results show that compared to the existing state-of-the-art methods, the HI constructed by the proposed method is closer to 1 in terms of the evaluation metric values and has a lower RUL prediction error. The high-quality HI constructed by the proposed method can provide a reliable basis for RUL prediction. |
| Author | Zhang, Chao Zhang, Xuyuntao Li, Shuaiyong |
| Author_xml | – sequence: 1 givenname: Shuaiyong orcidid: 0000-0002-3914-5173 surname: Li fullname: Li, Shuaiyong email: lishuaiyong@cqupt.edu.cn organization: Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 2 givenname: Chao orcidid: 0000-0001-8345-6238 surname: Zhang fullname: Zhang, Chao email: 1002030272@qq.com organization: Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 3 givenname: Xuyuntao orcidid: 0000-0002-2846-6377 surname: Zhang fullname: Zhang, Xuyuntao email: 861890504@qq.com organization: Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing, China |
| BookMark | eNp9kD1PwzAQhi1UJNrCzsAQiTnF30nGqiq0EpSBMlupc1FTUjvYThH_HlftgBiYTrq75z3dM0IDYw0gdEvwhBBcPKyXLxOKKZ8wljMs6AUaEiGytJCSDtAQY5KnBRfyCo2832GMM8mzIeqmycoeoE3eujI0NsC-s65sk7nZlkZDlcysOdi2jzMT29M-WDDaVuCSFYQv6z6S2rrk3fi-A3dofEQWULZhmyxN1egyxGnM8MH1-hhyjS7rsvVwc65jtH6cr2eL9Pn1aTmbPqeaFjSkmuuCV1JjzZhgG53RmouC57qSXNJNIZmoc6C1kATziuYZBcFqyCjDhOWajdH9KbZz9rMHH9TO9i6-4BXDTNCMC07jFj5taWe9d1CrzjX70n0rgtVRq4pa1VGrOmuNiPyD6CYc1Zngyqb9D7w7gQ0A_LrDcyFEzn4AuNyIEQ |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_TIM_2025_3561440 crossref_primary_10_1109_JIOT_2024_3520235 crossref_primary_10_1109_TII_2025_3552721 |
| Cites_doi | 10.1109/TII.2020.2976752 10.1016/j.cie.2023.108999 10.1109/TII.2020.2999442 10.1109/TMECH.2021.3098737 10.1109/TIE.2019.2947839 10.3390/sym14061111 10.3390/app112311516 10.1109/TMECH.2020.3012179 10.1109/SSCI44817.2019.9002776 10.1016/j.ymssp.2017.11.016 10.1109/TII.2019.2915536 10.1109/TIE.2019.2959492 10.1016/j.ress.2021.107530 10.1016/j.neucom.2017.02.045 10.1007/s40430-019-2010-6 10.1126/science.1127647 10.1109/PHM.2008.4711414 10.3390/s22218253 10.1109/TIM.2020.2978966 10.1016/j.renene.2019.09.041 10.1109/TIE.2023.3288188 10.1109/TIM.2023.3309384 10.1109/TIM.2023.3291801 10.1016/j.measurement.2019.107097 10.1016/j.isatra.2020.12.052 10.1109/TII.2019.2896288 10.1109/TIM.2020.3032218 10.1016/j.icte.2024.01.002 10.3390/app12115747 10.1145/1390156.1390294 10.1109/TIM.2022.3161705 10.1016/j.measurement.2022.112108 10.1109/TCSVT.2023.3278462 10.1109/TIM.2023.3300435 10.1109/TIM.2023.3251399 10.1109/LGRS.2021.3073560 10.1016/j.ymssp.2021.108573 10.1002/qre.1771 10.1109/PRAI55851.2022.9904057 10.1007/s11036-021-01762-0 10.48550/ARXIV.1406.1078 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2024.3383052 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 10 |
| ExternalDocumentID | 10_1109_TIM_2024_3383052 10485558 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Special General Project for Chongqing’s Technological Innovation and Application Development grantid: CSTB2022TIAD-GPX0028 – fundername: Open Fund of National Key Laboratory of Market Regulation (Safety of Mechanical and Electrical Equipment in Western Complex Environment) grantid: CQTJ-XBJD-KFKT202202 – fundername: Chongqing Natural Science Foundation Project grantid: CSTB2022NSCQ-MSX0230 – fundername: Science and Technology Research Project of Chongqing Education Commission grantid: KJZD-M202300605 – fundername: Special Support for Chongqing’s Post-Doctoral Research Project grantid: 2021XM3026 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-c4c94d6c0c3353bc72f45948cd6462b9635f8e2f56104d2872e53fe7230138c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001200475300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 08:35:08 EDT 2025 Tue Nov 18 22:37:10 EST 2025 Sat Nov 29 04:38:47 EST 2025 Wed Aug 27 02:09:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-c4c94d6c0c3353bc72f45948cd6462b9635f8e2f56104d2872e53fe7230138c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2846-6377 0000-0001-8345-6238 0000-0002-3914-5173 |
| PQID | 3035274542 |
| PQPubID | 85462 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2024_3383052 crossref_citationtrail_10_1109_TIM_2024_3383052 proquest_journals_3035274542 ieee_primary_10485558 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 Ye (ref26) 2022; 12 ref18 ref24 ref23 ref25 ref20 ref42 ref41 ref22 ref21 Wang (ref27) 2022; 14 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Nectoux (ref38) ref40 |
| References_xml | – ident: ref14 doi: 10.1109/TII.2020.2976752 – ident: ref19 doi: 10.1016/j.cie.2023.108999 – ident: ref41 doi: 10.1109/TII.2020.2999442 – ident: ref1 doi: 10.1109/TMECH.2021.3098737 – ident: ref22 doi: 10.1109/TIE.2019.2947839 – volume: 14 start-page: 1111 issue: 6 year: 2022 ident: ref27 article-title: Research on prediction method of gear pump remaining useful life based on DCAE and bi-LSTM publication-title: Symmetry doi: 10.3390/sym14061111 – ident: ref30 doi: 10.3390/app112311516 – ident: ref23 doi: 10.1109/TMECH.2020.3012179 – ident: ref21 doi: 10.1109/SSCI44817.2019.9002776 – ident: ref11 doi: 10.1016/j.ymssp.2017.11.016 – ident: ref3 doi: 10.1109/TII.2019.2915536 – ident: ref42 doi: 10.1109/TIE.2019.2959492 – ident: ref4 doi: 10.1016/j.ress.2021.107530 – ident: ref17 doi: 10.1016/j.neucom.2017.02.045 – ident: ref18 doi: 10.1007/s40430-019-2010-6 – ident: ref24 doi: 10.1126/science.1127647 – ident: ref40 doi: 10.1109/PHM.2008.4711414 – ident: ref7 doi: 10.3390/s22218253 – ident: ref12 doi: 10.1109/TIM.2020.2978966 – ident: ref15 doi: 10.1016/j.renene.2019.09.041 – ident: ref8 doi: 10.1109/TIE.2023.3288188 – ident: ref34 doi: 10.1109/TIM.2023.3309384 – ident: ref5 doi: 10.1109/TIM.2023.3291801 – ident: ref13 doi: 10.1016/j.measurement.2019.107097 – ident: ref29 doi: 10.1016/j.isatra.2020.12.052 – ident: ref2 doi: 10.1109/TII.2019.2896288 – ident: ref16 doi: 10.1109/TIM.2020.3032218 – start-page: 1 volume-title: Proc. IEEE Int. Conf. Prognostics Health Manage. ident: ref38 article-title: PRONOSTIA: An experimental platform for bearings accelerated degradation tests – ident: ref32 doi: 10.1016/j.icte.2024.01.002 – volume: 12 start-page: 5747 issue: 11 year: 2022 ident: ref26 article-title: Rolling bearing health indicator extraction and RUL prediction based on multi-scale convolutional autoencoder publication-title: Appl. Sci. doi: 10.3390/app12115747 – ident: ref25 doi: 10.1145/1390156.1390294 – ident: ref6 doi: 10.1109/TIM.2022.3161705 – ident: ref31 doi: 10.1016/j.measurement.2022.112108 – ident: ref33 doi: 10.1109/TCSVT.2023.3278462 – ident: ref10 doi: 10.1109/TIM.2023.3300435 – ident: ref20 doi: 10.1109/TIM.2023.3251399 – ident: ref37 doi: 10.1109/LGRS.2021.3073560 – ident: ref28 doi: 10.1016/j.ymssp.2021.108573 – ident: ref39 doi: 10.1002/qre.1771 – ident: ref35 doi: 10.1109/PRAI55851.2022.9904057 – ident: ref9 doi: 10.1007/s11036-021-01762-0 – ident: ref36 doi: 10.48550/ARXIV.1406.1078 |
| SSID | ssj0007647 |
| Score | 2.4634063 |
| Snippet | The health indicator (HI) of rotating machinery affects the reliability and accuracy of its remaining useful life (RUL) prediction. Convolutional autoencoder... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Convolution Data mining Feature extraction Health indicator (HI) Machinery Mining Modules remaining useful life (RUL) Roller bearings Rotating machinery spatiotemporal enhanced convolutional autoencoder (STEACE) Time-domain analysis Time-varying systems unsupervised learning |
| Title | A Novel Spatiotemporal Enhanced Convolutional Autoencoder Network for Unsupervised Health Indicator Construction |
| URI | https://ieeexplore.ieee.org/document/10485558 https://www.proquest.com/docview/3035274542 |
| Volume | 73 |
| WOSCitedRecordID | wos001200475300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6oKOjB3-J0Sg5ePFTTJP11HGPiQIvgFG-lTVMURjvstr_f99JuTETBWw9JKPnykvcl730P4AphdVWqkZZwVztKpqkTSa4dnqZuyI2rCqtT8PoQxHH49hY9tcnqNhfGGGODz8wNfdq3_LzSM7oqQwsnKRMvXIf1IPCbZK3lthv4qhHIdNGC0S1YvEny6HY0fEQmKNQN8THuiW9nkC2q8mMntsfL3d4_f2wfdls_kvUa4A9gzZSHsLOiLngIWza6U9dHMOmxuJqbMXu28dOtHNWYDcp3GwDA-lU5b9cgDTqbVqRvmZtPFjdh4gx9W_ZS1rMJ7S01dmnyl9iwpIceJO40xlKM9hhGd4NR_95pSy04WkRi6milI5X7mmspPZnpQBSKhFx07itfZGilXhEaUZC3pXJkWcJ4sjABEhhXhlqewEZZleYUWJaLyOSei147OgcuT4uQZ5qKrCN3irKiA7eLuU90K0NO1TDGiaUjPEoQrYTQSlq0OnC97DFpJDj-aHtM6Ky0a4DpQHeBb9IaaZ1I0oINlKfE2S_dzmGbRm-uXLqwgbNoLmBTz6cf9eelXX9f_CHXjA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB10VdSD3-L6mYMXD9U0SbftUURxcS2Cq3grbZqisLTLdnd_vzNpd1FEwVsPSVr6Msm8ZOYNwDnC6qpEIy3hrnaUTBInlFw7PEncgBtX5Van4LXnR1Hw9hY-NcnqNhfGGGODz8wlPdq7_KzUEzoqQwsnKRMvWIQlTynB63St-cLrd1QtkemiDaNjMLuV5OFVv_uIXFCoS2Jk3BPfdiFbVuXHWmw3mLvNf37aFmw0niS7rqHfhgVT7MD6F33BHVix8Z262oXhNYvKqRmwZxtB3QhSDdht8W5DANhNWUybWUiDTsYlKVxmZsSiOlCcoXfLXopqMqTVpcIudQYT6xZ01YPUncaYy9HuQf_utn9z7zTFFhwtQjF2tNKhyjqaayk9mWpf5IqkXHTWUR2Rop16eWBETv6WypBnCePJ3PhIYVwZaLkPraIszAGwNBOhyTwX_XZ0D1ye5AFPNZVZR_YUpnkbrmb_PtaNEDnVwxjElpDwMEa0YkIrbtBqw8W8x7AW4fij7R6h86VdDUwbjmf4xo2ZVrEkNVhfeUoc_tLtDFbv-4-9uNeNHo5gjd5UH8AcQwv_qDmBZT0df1SjUzsXPwFZr9rT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Spatiotemporal+Enhanced+Convolutional+Autoencoder+Network+for+Unsupervised+Health+Indicator+Construction&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Li%2C+Shuaiyong&rft.au=Zhang%2C+Chao&rft.au=Zhang%2C+Xuyuntao&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3383052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3383052 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |