A Novel Spatiotemporal Enhanced Convolutional Autoencoder Network for Unsupervised Health Indicator Construction

The health indicator (HI) of rotating machinery affects the reliability and accuracy of its remaining useful life (RUL) prediction. Convolutional autoencoder (CAE) is widely used for HI construction with the advantage of being unsupervised, but it still suffers from two problems: 1) the shallow lear...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on instrumentation and measurement Ročník 73; s. 1 - 10
Hlavní autori: Li, Shuaiyong, Zhang, Chao, Zhang, Xuyuntao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9456, 1557-9662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The health indicator (HI) of rotating machinery affects the reliability and accuracy of its remaining useful life (RUL) prediction. Convolutional autoencoder (CAE) is widely used for HI construction with the advantage of being unsupervised, but it still suffers from two problems: 1) the shallow learning of local spatial features and the neglect of global temporal features result in poor performance of the constructed HI trend and 2) a non-end-to-end form that requires human involvement, which is time-consuming and labor-intensive. Therefore, a novel unsupervised spatiotemporal enhanced convolutional autoencoder (STECAE) network is proposed in this article, which can directly enhance feature mining on raw data in both temporal and spatial dimensions without any prior knowledge. The STECAE network mainly consists of three components: spatial mining module (SMM), temporal learning module (TLM), and trend compensation mechanism (TCM). SMM enhances the deep mining of local spatial features via deep residual shrinkage module. TLM mines global temporal features through the gate recurrent unit (GRU). TCM acts as a bridge for spatiotemporal connectivity to improve the model's global sensing field and HI's trend performance. The effectiveness of the proposed method is validated through the dataset of rolling bearings and aero engines. The results show that compared to the existing state-of-the-art methods, the HI constructed by the proposed method is closer to 1 in terms of the evaluation metric values and has a lower RUL prediction error. The high-quality HI constructed by the proposed method can provide a reliable basis for RUL prediction.
AbstractList The health indicator (HI) of rotating machinery affects the reliability and accuracy of its remaining useful life (RUL) prediction. Convolutional autoencoder (CAE) is widely used for HI construction with the advantage of being unsupervised, but it still suffers from two problems: 1) the shallow learning of local spatial features and the neglect of global temporal features result in poor performance of the constructed HI trend and 2) a non-end-to-end form that requires human involvement, which is time-consuming and labor-intensive. Therefore, a novel unsupervised spatiotemporal enhanced convolutional autoencoder (STECAE) network is proposed in this article, which can directly enhance feature mining on raw data in both temporal and spatial dimensions without any prior knowledge. The STECAE network mainly consists of three components: spatial mining module (SMM), temporal learning module (TLM), and trend compensation mechanism (TCM). SMM enhances the deep mining of local spatial features via deep residual shrinkage module. TLM mines global temporal features through the gate recurrent unit (GRU). TCM acts as a bridge for spatiotemporal connectivity to improve the model’s global sensing field and HI’s trend performance. The effectiveness of the proposed method is validated through the dataset of rolling bearings and aero engines. The results show that compared to the existing state-of-the-art methods, the HI constructed by the proposed method is closer to 1 in terms of the evaluation metric values and has a lower RUL prediction error. The high-quality HI constructed by the proposed method can provide a reliable basis for RUL prediction.
Author Zhang, Chao
Zhang, Xuyuntao
Li, Shuaiyong
Author_xml – sequence: 1
  givenname: Shuaiyong
  orcidid: 0000-0002-3914-5173
  surname: Li
  fullname: Li, Shuaiyong
  email: lishuaiyong@cqupt.edu.cn
  organization: Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 2
  givenname: Chao
  orcidid: 0000-0001-8345-6238
  surname: Zhang
  fullname: Zhang, Chao
  email: 1002030272@qq.com
  organization: Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 3
  givenname: Xuyuntao
  orcidid: 0000-0002-2846-6377
  surname: Zhang
  fullname: Zhang, Xuyuntao
  email: 861890504@qq.com
  organization: Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing, China
BookMark eNp9kD1PwzAQhi1UJNrCzsAQiTnF30nGqiq0EpSBMlupc1FTUjvYThH_HlftgBiYTrq75z3dM0IDYw0gdEvwhBBcPKyXLxOKKZ8wljMs6AUaEiGytJCSDtAQY5KnBRfyCo2832GMM8mzIeqmycoeoE3eujI0NsC-s65sk7nZlkZDlcysOdi2jzMT29M-WDDaVuCSFYQv6z6S2rrk3fi-A3dofEQWULZhmyxN1egyxGnM8MH1-hhyjS7rsvVwc65jtH6cr2eL9Pn1aTmbPqeaFjSkmuuCV1JjzZhgG53RmouC57qSXNJNIZmoc6C1kATziuYZBcFqyCjDhOWajdH9KbZz9rMHH9TO9i6-4BXDTNCMC07jFj5taWe9d1CrzjX70n0rgtVRq4pa1VGrOmuNiPyD6CYc1Zngyqb9D7w7gQ0A_LrDcyFEzn4AuNyIEQ
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2025_3561440
crossref_primary_10_1109_JIOT_2024_3520235
crossref_primary_10_1109_TII_2025_3552721
Cites_doi 10.1109/TII.2020.2976752
10.1016/j.cie.2023.108999
10.1109/TII.2020.2999442
10.1109/TMECH.2021.3098737
10.1109/TIE.2019.2947839
10.3390/sym14061111
10.3390/app112311516
10.1109/TMECH.2020.3012179
10.1109/SSCI44817.2019.9002776
10.1016/j.ymssp.2017.11.016
10.1109/TII.2019.2915536
10.1109/TIE.2019.2959492
10.1016/j.ress.2021.107530
10.1016/j.neucom.2017.02.045
10.1007/s40430-019-2010-6
10.1126/science.1127647
10.1109/PHM.2008.4711414
10.3390/s22218253
10.1109/TIM.2020.2978966
10.1016/j.renene.2019.09.041
10.1109/TIE.2023.3288188
10.1109/TIM.2023.3309384
10.1109/TIM.2023.3291801
10.1016/j.measurement.2019.107097
10.1016/j.isatra.2020.12.052
10.1109/TII.2019.2896288
10.1109/TIM.2020.3032218
10.1016/j.icte.2024.01.002
10.3390/app12115747
10.1145/1390156.1390294
10.1109/TIM.2022.3161705
10.1016/j.measurement.2022.112108
10.1109/TCSVT.2023.3278462
10.1109/TIM.2023.3300435
10.1109/TIM.2023.3251399
10.1109/LGRS.2021.3073560
10.1016/j.ymssp.2021.108573
10.1002/qre.1771
10.1109/PRAI55851.2022.9904057
10.1007/s11036-021-01762-0
10.48550/ARXIV.1406.1078
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3383052
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 10
ExternalDocumentID 10_1109_TIM_2024_3383052
10485558
Genre orig-research
GrantInformation_xml – fundername: Special General Project for Chongqing’s Technological Innovation and Application Development
  grantid: CSTB2022TIAD-GPX0028
– fundername: Open Fund of National Key Laboratory of Market Regulation (Safety of Mechanical and Electrical Equipment in Western Complex Environment)
  grantid: CQTJ-XBJD-KFKT202202
– fundername: Chongqing Natural Science Foundation Project
  grantid: CSTB2022NSCQ-MSX0230
– fundername: Science and Technology Research Project of Chongqing Education Commission
  grantid: KJZD-M202300605
– fundername: Special Support for Chongqing’s Post-Doctoral Research Project
  grantid: 2021XM3026
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-c4c94d6c0c3353bc72f45948cd6462b9635f8e2f56104d2872e53fe7230138c3
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001200475300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 08:35:08 EDT 2025
Tue Nov 18 22:37:10 EST 2025
Sat Nov 29 04:38:47 EST 2025
Wed Aug 27 02:09:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-c4c94d6c0c3353bc72f45948cd6462b9635f8e2f56104d2872e53fe7230138c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2846-6377
0000-0001-8345-6238
0000-0002-3914-5173
PQID 3035274542
PQPubID 85462
PageCount 10
ParticipantIDs crossref_primary_10_1109_TIM_2024_3383052
crossref_citationtrail_10_1109_TIM_2024_3383052
proquest_journals_3035274542
ieee_primary_10485558
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
Ye (ref26) 2022; 12
ref18
ref24
ref23
ref25
ref20
ref42
ref41
ref22
ref21
Wang (ref27) 2022; 14
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Nectoux (ref38)
ref40
References_xml – ident: ref14
  doi: 10.1109/TII.2020.2976752
– ident: ref19
  doi: 10.1016/j.cie.2023.108999
– ident: ref41
  doi: 10.1109/TII.2020.2999442
– ident: ref1
  doi: 10.1109/TMECH.2021.3098737
– ident: ref22
  doi: 10.1109/TIE.2019.2947839
– volume: 14
  start-page: 1111
  issue: 6
  year: 2022
  ident: ref27
  article-title: Research on prediction method of gear pump remaining useful life based on DCAE and bi-LSTM
  publication-title: Symmetry
  doi: 10.3390/sym14061111
– ident: ref30
  doi: 10.3390/app112311516
– ident: ref23
  doi: 10.1109/TMECH.2020.3012179
– ident: ref21
  doi: 10.1109/SSCI44817.2019.9002776
– ident: ref11
  doi: 10.1016/j.ymssp.2017.11.016
– ident: ref3
  doi: 10.1109/TII.2019.2915536
– ident: ref42
  doi: 10.1109/TIE.2019.2959492
– ident: ref4
  doi: 10.1016/j.ress.2021.107530
– ident: ref17
  doi: 10.1016/j.neucom.2017.02.045
– ident: ref18
  doi: 10.1007/s40430-019-2010-6
– ident: ref24
  doi: 10.1126/science.1127647
– ident: ref40
  doi: 10.1109/PHM.2008.4711414
– ident: ref7
  doi: 10.3390/s22218253
– ident: ref12
  doi: 10.1109/TIM.2020.2978966
– ident: ref15
  doi: 10.1016/j.renene.2019.09.041
– ident: ref8
  doi: 10.1109/TIE.2023.3288188
– ident: ref34
  doi: 10.1109/TIM.2023.3309384
– ident: ref5
  doi: 10.1109/TIM.2023.3291801
– ident: ref13
  doi: 10.1016/j.measurement.2019.107097
– ident: ref29
  doi: 10.1016/j.isatra.2020.12.052
– ident: ref2
  doi: 10.1109/TII.2019.2896288
– ident: ref16
  doi: 10.1109/TIM.2020.3032218
– start-page: 1
  volume-title: Proc. IEEE Int. Conf. Prognostics Health Manage.
  ident: ref38
  article-title: PRONOSTIA: An experimental platform for bearings accelerated degradation tests
– ident: ref32
  doi: 10.1016/j.icte.2024.01.002
– volume: 12
  start-page: 5747
  issue: 11
  year: 2022
  ident: ref26
  article-title: Rolling bearing health indicator extraction and RUL prediction based on multi-scale convolutional autoencoder
  publication-title: Appl. Sci.
  doi: 10.3390/app12115747
– ident: ref25
  doi: 10.1145/1390156.1390294
– ident: ref6
  doi: 10.1109/TIM.2022.3161705
– ident: ref31
  doi: 10.1016/j.measurement.2022.112108
– ident: ref33
  doi: 10.1109/TCSVT.2023.3278462
– ident: ref10
  doi: 10.1109/TIM.2023.3300435
– ident: ref20
  doi: 10.1109/TIM.2023.3251399
– ident: ref37
  doi: 10.1109/LGRS.2021.3073560
– ident: ref28
  doi: 10.1016/j.ymssp.2021.108573
– ident: ref39
  doi: 10.1002/qre.1771
– ident: ref35
  doi: 10.1109/PRAI55851.2022.9904057
– ident: ref9
  doi: 10.1007/s11036-021-01762-0
– ident: ref36
  doi: 10.48550/ARXIV.1406.1078
SSID ssj0007647
Score 2.4634063
Snippet The health indicator (HI) of rotating machinery affects the reliability and accuracy of its remaining useful life (RUL) prediction. Convolutional autoencoder...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Convolution
Data mining
Feature extraction
Health indicator (HI)
Machinery
Mining
Modules
remaining useful life (RUL)
Roller bearings
Rotating machinery
spatiotemporal enhanced convolutional autoencoder (STEACE)
Time-domain analysis
Time-varying systems
unsupervised learning
Title A Novel Spatiotemporal Enhanced Convolutional Autoencoder Network for Unsupervised Health Indicator Construction
URI https://ieeexplore.ieee.org/document/10485558
https://www.proquest.com/docview/3035274542
Volume 73
WOSCitedRecordID wos001200475300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6oKOjB3-J0Sg5ePFTTJP11HGPiQIvgFG-lTVMURjvstr_f99JuTETBWw9JKPnykvcl730P4AphdVWqkZZwVztKpqkTSa4dnqZuyI2rCqtT8PoQxHH49hY9tcnqNhfGGGODz8wNfdq3_LzSM7oqQwsnKRMvXIf1IPCbZK3lthv4qhHIdNGC0S1YvEny6HY0fEQmKNQN8THuiW9nkC2q8mMntsfL3d4_f2wfdls_kvUa4A9gzZSHsLOiLngIWza6U9dHMOmxuJqbMXu28dOtHNWYDcp3GwDA-lU5b9cgDTqbVqRvmZtPFjdh4gx9W_ZS1rMJ7S01dmnyl9iwpIceJO40xlKM9hhGd4NR_95pSy04WkRi6milI5X7mmspPZnpQBSKhFx07itfZGilXhEaUZC3pXJkWcJ4sjABEhhXhlqewEZZleYUWJaLyOSei147OgcuT4uQZ5qKrCN3irKiA7eLuU90K0NO1TDGiaUjPEoQrYTQSlq0OnC97DFpJDj-aHtM6Ky0a4DpQHeBb9IaaZ1I0oINlKfE2S_dzmGbRm-uXLqwgbNoLmBTz6cf9eelXX9f_CHXjA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB10VdSD3-L6mYMXD9U0SbftUURxcS2Cq3grbZqisLTLdnd_vzNpd1FEwVsPSVr6Msm8ZOYNwDnC6qpEIy3hrnaUTBInlFw7PEncgBtX5Van4LXnR1Hw9hY-NcnqNhfGGGODz8wlPdq7_KzUEzoqQwsnKRMvWIQlTynB63St-cLrd1QtkemiDaNjMLuV5OFVv_uIXFCoS2Jk3BPfdiFbVuXHWmw3mLvNf37aFmw0niS7rqHfhgVT7MD6F33BHVix8Z262oXhNYvKqRmwZxtB3QhSDdht8W5DANhNWUybWUiDTsYlKVxmZsSiOlCcoXfLXopqMqTVpcIudQYT6xZ01YPUncaYy9HuQf_utn9z7zTFFhwtQjF2tNKhyjqaayk9mWpf5IqkXHTWUR2Rop16eWBETv6WypBnCePJ3PhIYVwZaLkPraIszAGwNBOhyTwX_XZ0D1ye5AFPNZVZR_YUpnkbrmb_PtaNEDnVwxjElpDwMEa0YkIrbtBqw8W8x7AW4fij7R6h86VdDUwbjmf4xo2ZVrEkNVhfeUoc_tLtDFbv-4-9uNeNHo5gjd5UH8AcQwv_qDmBZT0df1SjUzsXPwFZr9rT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Spatiotemporal+Enhanced+Convolutional+Autoencoder+Network+for+Unsupervised+Health+Indicator+Construction&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Li%2C+Shuaiyong&rft.au=Zhang%2C+Chao&rft.au=Zhang%2C+Xuyuntao&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3383052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3383052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon