An Incremental Gradient Method for Optimization Problems with Variational Inequality Constraints

We consider minimizing a sum of agent-specific nondifferentiable merely convex functions over the solution set of a variational inequality (VI) problem in that each agent is associated with a local monotone mapping. This problem finds an application in computation of the best equilibrium in nonlinea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 68; H. 12; S. 1 - 8
Hauptverfasser: Kaushik, Harshal D., Samadi, Sepideh, Yousefian, Farzad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9286, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We consider minimizing a sum of agent-specific nondifferentiable merely convex functions over the solution set of a variational inequality (VI) problem in that each agent is associated with a local monotone mapping. This problem finds an application in computation of the best equilibrium in nonlinear complementarity problems arising in transportation networks. We develop an iteratively regularized incremental gradient method where at each iteration, agents communicate over a directed cycle graph to update their solution iterates using their local information about the objective and the mapping. The proposed method is single-timescale in the sense that it does not involve any excessive hard-to-project computation per iteration. We derive non-asymptotic agent-wise convergence rates for the suboptimality of the global objective function and infeasibility of the VI constraints measured by a suitably defined dual gap function. The proposed method appears to be the first fully iterative scheme equipped with iteration complexity that can address distributed optimization problems with VI constraints over cycle graphs.
AbstractList We consider minimizing a sum of agent-specific nondifferentiable merely convex functions over the solution set of a variational inequality (VI) problem in that each agent is associated with a local monotone mapping. This problem finds an application in computation of the best equilibrium in nonlinear complementarity problems arising in transportation networks. We develop an iteratively regularized incremental gradient method where at each iteration, agents communicate over a directed cycle graph to update their solution iterates using their local information about the objective and the mapping. The proposed method is single-timescale in the sense that it does not involve any excessive hard-to-project computation per iteration. We derive non-asymptotic agent-wise convergence rates for the suboptimality of the global objective function and infeasibility of the VI constraints measured by a suitably defined dual gap function. The proposed method appears to be the first fully iterative scheme equipped with iteration complexity that can address distributed optimization problems with VI constraints over cycle graphs.
We consider minimizing a sum of agent-specific nondifferentiable merely convex functions over the solution set of a variational inequality (VI) problem in that each agent is associated with a local monotone mapping. This problem finds an application in computation of the best equilibrium in nonlinear complementarity problems arising in transportation networks. We develop an iteratively regularized incremental gradient method where at each iteration, agents communicate over a directed cycle graph to update their solution iterates using their local information about the objective and the mapping. The proposed method is single-timescale in the sense that it does not involve any excessive hard-to-project computation per iteration. We derive nonasymptotic agent-wise convergence rates for the suboptimality of the global objective function and infeasibility of the VI constraints measured by a suitably defined dual gap function. The proposed method appears to be the first fully iterative scheme equipped with iteration complexity that can address distributed optimization problems with VI constraints over cycle graphs.
Author Yousefian, Farzad
Kaushik, Harshal D.
Samadi, Sepideh
Author_xml – sequence: 1
  givenname: Harshal D.
  orcidid: 0000-0002-1159-5084
  surname: Kaushik
  fullname: Kaushik, Harshal D.
  organization: Bayer U.S. LLC, USA
– sequence: 2
  givenname: Sepideh
  orcidid: 0009-0005-1546-4371
  surname: Samadi
  fullname: Samadi, Sepideh
  organization: Department of Industrial and Systems Engineering, Rutgers University, USA
– sequence: 3
  givenname: Farzad
  orcidid: 0000-0003-2628-741X
  surname: Yousefian
  fullname: Yousefian, Farzad
  organization: Department of Industrial and Systems Engineering, Rutgers University, USA
BookMark eNp9kDtPwzAQxy1UJEphZ2CwxJxinxsnHqsKSqWiMhTW4DiO6iqxW9sVKp-e9DEgBnTDPXS_e_yvUc86qxG6o2RIKRGPy_FkCATYkEFK85ReoD5N0zyBFFgP9QmheSIg51foOoR1l_LRiPbR59jimVVet9pG2eCpl5XpQvyq48pVuHYeLzbRtOZbRuMsfvOubHQb8JeJK_whvTnWO3Rm9XYnGxP3eOJsiF4aG8MNuqxlE_Tt2Q_Q-_PTcvKSzBfT2WQ8TxQIiIliMFIZ0IzLighNtCyVYCyrQGdlnWpSE1UzWQsleKYU1IRxSFmZdQYVlGyAHk5zN95tdzrEYu12vrsrFJCLPAOeU951kVOX8i4Er-ti400r_b6gpDjoWHQ6Fgcdi7OOHcL_IMrE48-HD5v_wPsTaLTWv_aQNBOcsx_fBINd
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_LCSYS_2024_3401019
crossref_primary_10_1016_j_isci_2025_113368
crossref_primary_10_1016_j_neunet_2024_106462
crossref_primary_10_1109_TNNLS_2025_3563991
crossref_primary_10_1137_23M1589402
Cites_doi 10.1007/s10107-017-1175-y
10.1137/1.9781611974997
10.1007/s10107-007-0163-z
10.7551/mitpress/8996.003.0006
10.1017/CBO9780511800481
10.1007/s10107-014-0769-x
10.1137/20M1357378
10.23919/ACC50511.2021.9483429
10.1137/15M1049695
10.1137/S1052623499362111
10.1137/17M1147846
10.1109/TAC.2014.2308612
10.1007/s10107-018-01357-w
10.1287/10-SSY011
10.1137/S0036144595285963
10.1137/040615961
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2023.3251851
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 8
ExternalDocumentID 10_1109_TAC_2023_3251851
10057966
Genre orig-research
GrantInformation_xml – fundername: DOE
  grantid: DE-SC0023303
– fundername: NSF CAREER
  grantid: ECCS-1944500
– fundername: ONR
  grantid: N00014-22-1-2757
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
~02
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
VH1
VJK
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-c324c72176ad09e0eabc9337d2e7bf5e0f0cf3af9c967cc2f036253b7b7b2d2b3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122871700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Mon Jun 30 10:15:30 EDT 2025
Sat Nov 29 05:41:08 EST 2025
Tue Nov 18 22:35:33 EST 2025
Mon Aug 11 03:35:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-c324c72176ad09e0eabc9337d2e7bf5e0f0cf3af9c967cc2f036253b7b7b2d2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-1546-4371
0000-0002-1159-5084
0000-0003-2628-741X
PQID 2898726816
PQPubID 85475
PageCount 8
ParticipantIDs crossref_primary_10_1109_TAC_2023_3251851
ieee_primary_10057966
crossref_citationtrail_10_1109_TAC_2023_3251851
proquest_journals_2898726816
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
aybat (ref16) 0
facchinei (ref2) 2003
roux (ref13) 0
defazio (ref14) 0
ref10
ref1
ref17
amini (ref21) 2019
ref24
ref23
ref26
ref25
ref20
ref22
bertsekas (ref9) 2016
nedi? (ref5) 2002
nedi? (ref11) 2001; 12
ref8
johari (ref4) 2004
ref7
ref3
ref6
bertsekas (ref19) 2015
nedi? (ref18) 0
References_xml – ident: ref22
  doi: 10.1007/s10107-017-1175-y
– ident: ref24
  doi: 10.1137/1.9781611974997
– year: 2003
  ident: ref2
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
– ident: ref26
  doi: 10.1007/s10107-007-0163-z
– year: 2002
  ident: ref5
  article-title: Subgradient methods for convex minimization
– start-page: 5049
  year: 0
  ident: ref16
  article-title: A primal-dual method for conic constrained distributed optimization problems
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 372
  year: 0
  ident: ref18
  article-title: Convergence rate of a penalty method for strongly convex problems with linear constraints
  publication-title: Proc IEEE 59th Conf Decis Control
– year: 2004
  ident: ref4
  article-title: Efficiency loss in market mechanisms for resource allocation
– year: 2019
  ident: ref21
  article-title: An iterative regularized mirror descent method for ill-posed nondifferentiable stochastic optimization
– ident: ref10
  doi: 10.7551/mitpress/8996.003.0006
– ident: ref3
  doi: 10.1017/CBO9780511800481
– ident: ref6
  doi: 10.1007/s10107-014-0769-x
– ident: ref23
  doi: 10.1137/20M1357378
– start-page: 1646
  year: 0
  ident: ref14
  article-title: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.23919/ACC50511.2021.9483429
– year: 2015
  ident: ref19
  article-title: Incremental aggregated proximal and augmented Lagrangian algorithms
  publication-title: MIT Lab for Info and Decision Syst
– start-page: 2663
  year: 0
  ident: ref13
  article-title: A stochastic gradient method with an exponential convergence rate for finite training sets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref7
  doi: 10.1137/15M1049695
– volume: 12
  start-page: 109
  year: 2001
  ident: ref11
  article-title: Incremental subgradient methods for nondifferentiable optimization
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623499362111
– ident: ref8
  doi: 10.1137/17M1147846
– ident: ref15
  doi: 10.1109/TAC.2014.2308612
– ident: ref17
  doi: 10.1007/s10107-018-01357-w
– ident: ref25
  doi: 10.1287/10-SSY011
– ident: ref1
  doi: 10.1137/S0036144595285963
– ident: ref12
  doi: 10.1137/040615961
– year: 2016
  ident: ref9
  publication-title: Nonlinear Programming
SSID ssj0016441
Score 2.4891336
Snippet We consider minimizing a sum of agent-specific nondifferentiable merely convex functions over the solution set of a variational inequality (VI) problem in that...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Complexity theory
Computation
Computational complexity
Computational modeling
Convergence
Distributed algorithms
Gradient methods
Iterative methods
Linear programming
Mapping
Mathematical programming
Optimization
Optimization methods
Stochastic processes
Transportation networks
Title An Incremental Gradient Method for Optimization Problems with Variational Inequality Constraints
URI https://ieeexplore.ieee.org/document/10057966
https://www.proquest.com/docview/2898726816
Volume 68
WOSCitedRecordID wos001122871700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62eNCDz4rVKjl48bDtNvvI5liK1YPWHmrpbU2yCQi6lXYr-O-dPFoqoiALyx6SEDI7-TKTmfkQuiKMR4ITBWaJjIO4UGEgeEyCIuFamopwygbRTO7pcJhNp2zkk9VtLoxSygafqbb5tHf5xUwujasMNNymTqY1VKM0dcla6ysDA-xu2wUNJtn6TjJknXGv3zY04e0I0DxLut8wyJKq_NiJLbwM9v85sQO058-RuOcEf4i2VHmEdjeqCx6j516JQf2dAxDa3s5teFeFHyxrNIbjKn6EHePNp2LikSOXWWDjnMUTsKK9pxCGUS778hMbhk_LK1EtGuhpcDPu3wWeUCGQhJEqkHB6kmDy0ZQXIVOh4kKyKKIFUVToRIU6lDrimkmWUimJNvCWRILCQwoiohNUL2elOkUYzDbANSEBBA3Xr87gpaI41TKRPBbdJuqsljiXvtq4mdxrbq2OkOUglNwIJfdCaaLrdY93V2njj7YNI4SNdm79m6i1EmPudXGRg0mZUZJm3fTsl27naMeM7qJUWqhezZfqAm3Lj-plMb-0v9kXRbzQhA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90CuqDnxOnU_Pgiw-dXfqZxzGcE7e5hzn2Fts0BUE7WTvB_95Lmo2JKEih9CFpQ665X-5ydz-AK8oiJ46oRLNEuJabSNuKI5daiRelQlWEkzqIZtwLBoNwMmFDk6yuc2GklDr4TDbUoz7LT6ZirlxluMJ16qS_DhuKOsukay0PDRS0l4oX1zANl6eSNrsZtdoNRRTecBDPQ6_5DYU0rcoPXawBprP3z6Htw67ZSZJWKfoDWJPZIeys1Bc8gudWRlABlC5AbHs30wFeBelr3miCG1byiDrjzSRjkmFJL5MT5Z4lY7Sjja8QXyPL_MtPojg-NbNEkVfhqXM7anctQ6lgCcpoYQncPwk0-gI_SmwmbRnFgjlOkFAZxKkn7dQWqROlTDA_EIKmCuA8Jw7wogmNnWOoZNNMngBBww2RLRYIg4rtNw3xJh3XT4UnIjdu1uBmMcVcmHrjanCvXNsdNuMoFK6Ewo1QanC97PFe1tr4o21VCWGlXTn_NagvxMjNasw5GpVhQP2w6Z_-0u0Strqjfo_37gcPZ7CtvlTGrNShUszm8hw2xUfxks8u9C_3BUxR080
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Incremental+Gradient+Method+for+Optimization+Problems+With+Variational+Inequality+Constraints&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Kaushik%2C+Harshal+D.&rft.au=Samadi%2C+Sepideh&rft.au=Yousefian%2C+Farzad&rft.date=2023-12-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=68&rft.issue=12&rft.spage=7879&rft.epage=7886&rft_id=info:doi/10.1109%2FTAC.2023.3251851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2023_3251851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon