Zoom in on the Plant: Fine-Grained Analysis of Leaf, Stem, and Vein Instances

Robot perception is far from what humans are capable of. Humans do not only have a complex semantic scene understanding but also extract fine-grained intra-object properties for the salient ones. When humans look at plants, they naturally perceive the plant architecture with its individual leaves an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE robotics and automation letters Ročník 9; číslo 2; s. 1588 - 1595
Hlavní autori: Guldenring, Ronja, Andersen, Rasmus Eckholdt, Nalpantidis, Lazaros
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2377-3766, 2377-3766
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Robot perception is far from what humans are capable of. Humans do not only have a complex semantic scene understanding but also extract fine-grained intra-object properties for the salient ones. When humans look at plants, they naturally perceive the plant architecture with its individual leaves and branching system. In this work, we want to advance the granularity in plant understanding for agricultural precision robots. We develop a model to extract fine-grained phenotypic information, such as leaf-, stem-, and vein instances. The underlying dataset RumexLeaves is made publicly available and is the first of its kind with keypoint-guided polyline annotations leading along the line from the lowest stem point along the leaf basal to the leaf apex. Furthermore, we introduce an adapted metric POKS complying with the concept of keypoint-guided polylines. In our experimental evaluation, we provide baseline results for our newly introduced dataset while showcasing the benefits of POKS over OKS.
AbstractList Robot perception is far from what humans are capable of. Humans do not only have a complex semantic scene understanding but also extract fine-grained intra-object properties for the salient ones. When humans look at plants, they naturally perceive the plant architecture with its individual leaves and branching system. In this work, we want to advance the granularity in plant understanding for agricultural precision robots. We develop a model to extract fine-grained phenotypic information, such as leaf-, stem-, and vein instances. The underlying dataset RumexLeaves is made publicly available and is the first of its kind with keypoint-guided polyline annotations leading along the line from the lowest stem point along the leaf basal to the leaf apex. Furthermore, we introduce an adapted metric POKS complying with the concept of keypoint-guided polylines. In our experimental evaluation, we provide baseline results for our newly introduced dataset while showcasing the benefits of POKS over OKS.
Author Nalpantidis, Lazaros
Guldenring, Ronja
Andersen, Rasmus Eckholdt
Author_xml – sequence: 1
  givenname: Ronja
  orcidid: 0000-0001-6430-7405
  surname: Guldenring
  fullname: Guldenring, Ronja
  email: ronjag@dtu.dk
  organization: Technical University of Denmark, Kongens Lyngby, Denmark
– sequence: 2
  givenname: Rasmus Eckholdt
  orcidid: 0000-0001-5867-193X
  surname: Andersen
  fullname: Andersen, Rasmus Eckholdt
  email: recan@dtu.dk
  organization: Technical University of Denmark, Kongens Lyngby, Denmark
– sequence: 3
  givenname: Lazaros
  orcidid: 0000-0002-3620-4123
  surname: Nalpantidis
  fullname: Nalpantidis, Lazaros
  email: lanalpa@dtu.dk
  organization: Technical University of Denmark, Kongens Lyngby, Denmark
BookMark eNp9kE1PAjEQhhuDiYjcPXho4pXFfu2WeiNEkASj8evgpSnd2bhkaXFbDvx7S-BAPHh65_A-M5PnEnWcd4DQNSVDSom6W7yOh4wwPuRcFCMiz1CXcSkzLouiczJfoH4IK0IIzZnkKu-ipy_v17h22DscvwG_NMbFezytHWSz1qQo8diZZhfqgH2FF2CqAX6LsB5g40r8CYmduxCNsxCu0HllmgD9Y_bQx_ThffKYLZ5n88l4kVmmWMwstUJJK4woKKMiXzK6pCXJRclAwkiMTMnzylrLK0FoqhqlZCUk5UIJWALvodvD3k3rf7YQol75bZveDJopylTOGM1TixxatvUhtFDpTVuvTbvTlOi9N5286b03ffSWkOIPYutoYu1dTDKa_8CbA1gDwMkdLjkllP8CnRF5Ig
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_TPAMI_2024_3419548
Cites_doi 10.1109/CVPR42600.2020.00933
10.1145/3132300.3132315
10.1002/rob.21901
10.1104/pp.15.00974
10.3389/fpls.2020.00499
10.5815/ijigsp.2010.02.04
10.1109/CVPR.2019.00953
10.1007/978-981-15-7834-2_54
10.3389/fpls.2022.1043884
10.1109/ICCV.2017.324
10.1111/pce.14225
10.1109/IROS51168.2021.9636770
10.1021/acsomega.1c02398
10.1002/rob.22196
10.14257/ijbsbt.2013.5.5.06
10.1109/CVPR.2018.00418
10.1109/ICRA46639.2022.9811358
10.1109/LRA.2022.3147462
10.1109/WACV51458.2022.00302
10.1109/LRA.2021.3060712
10.1109/IROS.2018.8593678
10.1007/s11263-021-01513-4
10.1109/ICRA48891.2023.10160918
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2023.3346807
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 1595
ExternalDocumentID 10_1109_LRA_2023_3346807
10373101
Genre orig-research
GrantInformation_xml – fundername: Project "Galileo-assisted robot to tackle the weed Rumex obtusifolius and increase the profitability and sustainability of dairy farming
  grantid: H2020-SPACE-EGNSS-2019-870258
– fundername: European Commission and European GNSS Agency
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-c1c497c4a4612145b21b1d054d2e7e848ad35fccc3f401497a997f4713494ebe3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001140504500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Jun 29 12:59:13 EDT 2025
Tue Nov 18 19:37:57 EST 2025
Sat Nov 29 06:03:28 EST 2025
Wed Aug 27 02:29:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-c1c497c4a4612145b21b1d054d2e7e848ad35fccc3f401497a997f4713494ebe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3620-4123
0000-0001-5867-193X
0000-0001-6430-7405
PQID 2912952215
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2023_3346807
proquest_journals_2912952215
crossref_citationtrail_10_1109_LRA_2023_3346807
ieee_primary_10373101
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref2
ref1
ref16
ref19
ref18
ref24
Zhou (ref22) 2019
ref23
ref26
ref25
ref21
Li (ref20) 2023; 13
ref27
Weyler (ref17) 2023
ref8
ref7
ref9
Li (ref10) 2011; 27
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1109/CVPR42600.2020.00933
– ident: ref12
  doi: 10.1145/3132300.3132315
– ident: ref19
  doi: 10.1002/rob.21901
– ident: ref8
  doi: 10.1104/pp.15.00974
– volume: 13
  issue: 9
  volume-title: Agronomy
  year: 2023
  ident: ref20
  article-title: Real-time joint-stem prediction for agricultural robots in grasslands using multi-task learning
– ident: ref11
  doi: 10.3389/fpls.2020.00499
– ident: ref9
  doi: 10.5815/ijigsp.2010.02.04
– year: 2019
  ident: ref22
  article-title: Objects as points
– ident: ref25
  doi: 10.1109/CVPR.2019.00953
– ident: ref14
  doi: 10.1007/978-981-15-7834-2_54
– ident: ref15
  doi: 10.3389/fpls.2022.1043884
– ident: ref27
  doi: 10.1109/ICCV.2017.324
– ident: ref5
  doi: 10.1111/pce.14225
– ident: ref6
  doi: 10.1109/IROS51168.2021.9636770
– ident: ref4
  doi: 10.1021/acsomega.1c02398
– ident: ref7
  doi: 10.1002/rob.22196
– ident: ref13
  doi: 10.14257/ijbsbt.2013.5.5.06
– volume: 27
  start-page: 196
  year: 2011
  ident: ref10
  article-title: Extraction of leaf vein based on improved Sobel algorithm and hue information
  publication-title: Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agricultural Eng.
– year: 2023
  ident: ref17
  article-title: PhenoBenchA large dataset and benchmarks for semantic image interpretation in the agricultural domain
– ident: ref26
  doi: 10.1109/CVPR.2018.00418
– ident: ref21
  doi: 10.1109/ICRA46639.2022.9811358
– ident: ref1
  doi: 10.1109/LRA.2022.3147462
– ident: ref2
  doi: 10.1109/WACV51458.2022.00302
– ident: ref16
  doi: 10.1109/LRA.2021.3060712
– ident: ref18
  doi: 10.1109/IROS.2018.8593678
– ident: ref24
  doi: 10.1007/s11263-021-01513-4
– ident: ref3
  doi: 10.1109/ICRA48891.2023.10160918
SSID ssj0001527395
Score 2.2864325
Snippet Robot perception is far from what humans are capable of. Humans do not only have a complex semantic scene understanding but also extract fine-grained...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1588
SubjectTerms Agricultural robots
Annotations
Crops
Data models
Datasets
Feature extraction
field robots
Grasslands
Image categorization
image dataset
keypoint-guided polylines
Phenotypes
phenotyping
Plants (botany)
Robotics and automation in agriculture and forestry
Robots
Scene analysis
Stems
Title Zoom in on the Plant: Fine-Grained Analysis of Leaf, Stem, and Vein Instances
URI https://ieeexplore.ieee.org/document/10373101
https://www.proquest.com/docview/2912952215
Volume 9
WOSCitedRecordID wos001140504500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTOXLwIqxb26RL4m3IpsI2xC-Gl5LmAwbaytZ59G83SVsdiIK3Ht4L5b02-b0k7_cD4AwhiVUiuRfSRHuYIelRRgMvRFwQ5YtIJo4yf0QmEzqdstuyWd31wiil3OUz1bGP7ixfZmJpt8q6tqfNwBFT7KwTQopmre8NFUslxqLqKNJn3dFdv2PVwTsI4R61grErS4_TUvkxAbtVZbjzz_fZBdslfIT9It97YE2l-2BrhVTwAIyfDRaGsxRmKTToDlpZovwCDo2Fd2UFIZSEFRUJzDQcKa7b8D5Xr23IUwmflPG9cajRzCF18DgcPFxee6VogidCFuaeCARmRGCOLTcYjpIwSAJpgJkMFVEUUy5RpIUQSGNbHhHOGNHY0RSarCl0CGpplqojADXrRTpBZigssC80p5zKRItEUtTDAW-AbhXPWJSM4lbY4iV2lYXPYpOB2GYgLjPQAOdfHm8Fm8YftnUb8RW7ItgN0KxyFpf_2yIOmcEtBkoG0fEvbidg04yOiwvXTVDL50t1CjbEez5bzFtgffwxaLkP6hNxI8a2
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6ignrw58Tp1By8COvWNumaeBvi3LAbolOGl5LmBwy0la3z7zdJWx2Igrce3mvLe23yvSTv-wC4QEhgmQjm-CRRDqZIOIQSz_ER46F0eSASS5kfhaMRmUzofdmsbnthpJT28JlsmUu7ly8yvjBLZW3T06bhiC521gKMfa9o1_peUjFkYjSoNiNd2o4eui2jD95CCHeIkYxdmnysmsqPIdjOK72df77RLtguASTsFhnfAysy3QdbS7SCB2D4otEwnKYwS6HGd9AIE-VXsKctnFsjCSEFrMhIYKZgJJlqwsdcvjUhSwV8ltp3YHGjHkVq4Kl3M77uO6VsgsN96ucO9zimIccMG3YwHCS-l3hCQzPhy1ASTJhAgeKcI4VNgRQySkOFLVGhzptEh2A1zVJ5BKCinUAlSN8Kc-xyxQgjIlE8EQR1sMfqoF3FM-Ylp7iRtniNbW3h0lhnIDYZiMsM1MHll8d7wafxh23NRHzJrgh2HTSqnMXlHzePfaqRiwaTXnD8i9s52OiPh1EcDUZ3J2BTPwkXx68bYDWfLeQpWOcf-XQ-O7Of1Sc_KsjM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zoom+in+on+the+Plant%3A+Fine-Grained+Analysis+of+Leaf%2C+Stem%2C+and+Vein+Instances&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Guldenring%2C+Ronja&rft.au=Rasmus+Eckholdt+Andersen&rft.au=Nalpantidis%2C+Lazaros&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=9&rft.issue=2&rft.spage=1588&rft_id=info:doi/10.1109%2FLRA.2023.3346807&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon