YOLOv8-QSD: An Improved Small Object Detection Algorithm for Autonomous Vehicles Based on YOLOv8

As self-driving vehicles become more prevalent, the speed and accuracy of detecting surrounding objects through onboard sensing technology have become increasingly important. The YOLOv8-QSD network is a novel anchor-free driving scene detection network that builds on YOLOv8 and ensures detection acc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 73; s. 1 - 16
Hlavní autoři: Wang, Hai, Liu, Chenyu, Cai, Yingfeng, Chen, Long, Li, Yicheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As self-driving vehicles become more prevalent, the speed and accuracy of detecting surrounding objects through onboard sensing technology have become increasingly important. The YOLOv8-QSD network is a novel anchor-free driving scene detection network that builds on YOLOv8 and ensures detection accuracy while maintaining efficiency. The network's backbone employs structural reparameterization techniques to transform the diverse branch block (DBB)-based model. To accurately detect small objects, it integrates features of different scales and implements a bidirectional feature pyramid network (BiFPN)-based feature pyramid after the backbone. To address the challenge of long-range detection in driving scenarios, a query-based model with a new pipeline structure is introduced. The test results demonstrate that this algorithm outperforms YOLOv8 on the large-scale small object detection dataset (SODA-A) in terms of both speed and accuracy. With an accuracy rate of 64.5% and reduced computational requirements of 7.1 GFLOPs, it satisfies the speed, precision, and cost-effectiveness requirements for commercial vehicles in high-speed road driving scenarios.
AbstractList As self-driving vehicles become more prevalent, the speed and accuracy of detecting surrounding objects through onboard sensing technology have become increasingly important. The YOLOv8-QSD network is a novel anchor-free driving scene detection network that builds on YOLOv8 and ensures detection accuracy while maintaining efficiency. The network’s backbone employs structural reparameterization techniques to transform the diverse branch block (DBB)-based model. To accurately detect small objects, it integrates features of different scales and implements a bidirectional feature pyramid network (BiFPN)-based feature pyramid after the backbone. To address the challenge of long-range detection in driving scenarios, a query-based model with a new pipeline structure is introduced. The test results demonstrate that this algorithm outperforms YOLOv8 on the large-scale small object detection dataset (SODA-A) in terms of both speed and accuracy. With an accuracy rate of 64.5% and reduced computational requirements of 7.1 GFLOPs, it satisfies the speed, precision, and cost-effectiveness requirements for commercial vehicles in high-speed road driving scenarios.
Author Li, Yicheng
Chen, Long
Wang, Hai
Liu, Chenyu
Cai, Yingfeng
Author_xml – sequence: 1
  givenname: Hai
  orcidid: 0000-0002-9136-8091
  surname: Wang
  fullname: Wang, Hai
  email: wanghai1019@163.com
  organization: School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China
– sequence: 2
  givenname: Chenyu
  orcidid: 0009-0004-9552-986X
  surname: Liu
  fullname: Liu, Chenyu
  email: 758273063@qq.com
  organization: School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China
– sequence: 3
  givenname: Yingfeng
  orcidid: 0000-0002-0633-9887
  surname: Cai
  fullname: Cai, Yingfeng
  email: caicaixiao0304@126.com
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
– sequence: 4
  givenname: Long
  orcidid: 0000-0002-2079-3867
  surname: Chen
  fullname: Chen, Long
  email: chenlong@ujs.edu.cn
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
– sequence: 5
  givenname: Yicheng
  orcidid: 0000-0003-2937-7162
  surname: Li
  fullname: Li, Yicheng
  email: liyucheng070@163.com
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
BookMark eNp9kM1PwkAQxTcGEwG9e_Cwiefi7Ee7rTcEP0gwxIAmnurSTqWk7eJuIfG_dwkcjAdPbw7v92bm9UinMQ0ScslgwBgkN4vJ84ADlwMhVAIJnJAuC0MVJFHEO6QLwOIgkWF0RnrOrQFARVJ1ycf7bDrbxcHLfHxLhw2d1BtrdpjTea2ris6Wa8xaOsbWS2kaOqw-jS3bVU0LY-lw25rG1Gbr6BuuyqxCR--087i3HpLPyWmhK4cXR-2T14f7xegpmM4eJ6PhNMh4wtsggwIyCKXKE5VrvpQFj5mKI1bEKpZ-ZDkyBI2FBJS50t7KQxQqi2GZi0T0yfUh19__tUXXpmuztY1fmQoQIuJCeemT6ODKrHHOYpFmZav3n7VWl1XKIN23mfo2032b6bFND8IfcGPLWtvv_5CrA1Ii4i-7VFIKKX4A39h_ww
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_JIOT_2025_3564058
crossref_primary_10_1109_TGRS_2025_3590447
crossref_primary_10_1109_TIM_2024_3522698
crossref_primary_10_1007_s10489_024_06213_3
crossref_primary_10_1007_s11227_025_07822_6
crossref_primary_10_1109_TGRS_2024_3486559
crossref_primary_10_1155_joro_8556780
crossref_primary_10_1038_s41598_025_07021_6
crossref_primary_10_1007_s11227_025_07585_0
crossref_primary_10_1109_TIM_2025_3548792
crossref_primary_10_1088_2631_8695_adf71d
crossref_primary_10_1007_s10462_025_11253_3
crossref_primary_10_1109_JSTARS_2025_3551551
crossref_primary_10_1117_1_JEI_34_2_023014
crossref_primary_10_1007_s11760_025_04370_7
crossref_primary_10_1109_TIM_2025_3604925
crossref_primary_10_1109_ACCESS_2024_3515201
crossref_primary_10_1109_ACCESS_2025_3546622
crossref_primary_10_3390_rs16234374
crossref_primary_10_1109_TIM_2025_3559616
crossref_primary_10_1109_TIM_2025_3604122
crossref_primary_10_1109_ACCESS_2025_3551686
crossref_primary_10_1109_TIM_2025_3573344
crossref_primary_10_1109_TGRS_2025_3578800
crossref_primary_10_1007_s11554_024_01592_9
crossref_primary_10_1109_TIM_2025_3544365
crossref_primary_10_1007_s11227_024_06487_x
crossref_primary_10_1007_s11760_025_04612_8
crossref_primary_10_1007_s11227_025_07577_0
crossref_primary_10_1038_s41598_025_15975_w
crossref_primary_10_1109_TITS_2025_3545942
crossref_primary_10_1007_s11554_025_01682_2
crossref_primary_10_1109_TIM_2024_3522436
crossref_primary_10_1109_LGRS_2025_3550349
crossref_primary_10_1109_TIM_2025_3576955
crossref_primary_10_48084_etasr_11105
crossref_primary_10_1007_s11227_024_06527_6
crossref_primary_10_3389_fpls_2025_1540670
crossref_primary_10_1007_s44443_025_00223_y
crossref_primary_10_1109_TCSVT_2024_3519569
crossref_primary_10_1007_s11554_024_01562_1
crossref_primary_10_1109_ACCESS_2025_3585561
crossref_primary_10_1109_TVT_2024_3496513
crossref_primary_10_1109_JSTARS_2025_3528057
crossref_primary_10_1007_s11760_024_03361_4
crossref_primary_10_1109_TIM_2025_3551431
crossref_primary_10_3389_fpls_2025_1617997
crossref_primary_10_35784_iapgos_6968
crossref_primary_10_1038_s41598_025_92148_9
crossref_primary_10_1109_TIM_2025_3561424
Cites_doi 10.1109/CVPRW59228.2023.00564
10.1109/CVPR.2018.00644
10.1109/ICCVW.2019.00030
10.1109/CVPR.2019.00720
10.1109/CVPR46437.2021.01422
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2017.211
10.1007/978-3-319-46448-0_2
10.1016/j.procs.2022.01.135
10.1109/CVPR46437.2021.01074
10.1007/978-3-031-20077-9_31
10.1109/ICCV.2019.00929
10.1109/ICCV.2019.00972
10.1007/978-3-030-01264-9_45
10.1109/TETCI.2023.3235381
10.1609/aaai.v33i01.33019259
10.1109/ICCV.2019.00667
10.1109/tpami.2016.2577031
10.1109/TIM.2022.3158998
10.1109/ICIP46576.2022.9897990
10.1109/TIM.2022.3181903
10.1109/TPAMI.2023.3290594
10.1109/CVPR52688.2022.01330
10.18653/v1/P19-1580
10.1109/TITS.2023.3273286
10.1109/ICCV.2015.169
10.1109/TIM.2021.3052575
10.1109/TIM.2022.3192056
10.3390/electronics12102323
10.1109/CVPR42600.2020.01261
10.1109/ICCV.2017.324
10.1109/TITS.2022.3193909
10.1016/j.eswa.2021.114602
10.1109/CVPR42600.2020.00978
10.1109/ICIP42928.2021.9506347
10.1109/ICCV.2017.322
10.1016/j.autcon.2018.02.009
10.1109/TIM.2022.3196954
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3379090
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 16
ExternalDocumentID 10_1109_TIM_2024_3379090
10474434
Genre orig-research
GrantInformation_xml – fundername: Key Research and Development Program of Jiangsu Province
  grantid: BE2020083-3
– fundername: National Natural Science Foundation of China
  grantid: 52225212; U20A20333; 52072160
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-c0f0c0547d97da2b4f2817861f87848171de1e0aef40e4d7a54725e37c80bd393
IEDL.DBID RIE
ISICitedReferencesCount 159
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197885000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 08:28:23 EDT 2025
Sat Nov 29 08:08:25 EST 2025
Tue Nov 18 22:28:51 EST 2025
Wed Aug 27 01:42:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-c0f0c0547d97da2b4f2817861f87848171de1e0aef40e4d7a54725e37c80bd393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2937-7162
0000-0002-2079-3867
0000-0002-9136-8091
0009-0004-9552-986X
0000-0002-0633-9887
PQID 3033623703
PQPubID 85462
PageCount 16
ParticipantIDs proquest_journals_3033623703
crossref_primary_10_1109_TIM_2024_3379090
ieee_primary_10474434
crossref_citationtrail_10_1109_TIM_2024_3379090
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
Jocher (ref14) 2022
ref36
ref31
ref11
ref33
ref10
ref32
Chen (ref30); 33
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
Zhu (ref37)
ref28
Ge (ref15) 2021
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – volume: 33
  start-page: 5621
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: RepPoints V2: Verification meets regression for object detection
– ident: ref10
  doi: 10.1109/CVPRW59228.2023.00564
– ident: ref32
  doi: 10.1109/CVPR.2018.00644
– ident: ref41
  doi: 10.1109/ICCVW.2019.00030
– ident: ref37
  article-title: Deformable DETR: Deformable transformers for end-to-end object detection
  publication-title: arXiv:2010.04159
– ident: ref25
  doi: 10.1109/CVPR.2019.00720
– ident: ref38
  doi: 10.1109/CVPR46437.2021.01422
– ident: ref42
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref17
  doi: 10.1109/CVPR.2017.211
– ident: ref9
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref1
  doi: 10.1016/j.procs.2022.01.135
– ident: ref12
  doi: 10.1109/CVPR46437.2021.01074
– ident: ref39
  doi: 10.1007/978-3-031-20077-9_31
– ident: ref24
  doi: 10.1109/ICCV.2019.00929
– ident: ref35
  doi: 10.1109/ICCV.2019.00972
– ident: ref33
  doi: 10.1007/978-3-030-01264-9_45
– ident: ref2
  doi: 10.1109/TETCI.2023.3235381
– ident: ref26
  doi: 10.1609/aaai.v33i01.33019259
– ident: ref34
  doi: 10.1109/ICCV.2019.00667
– ident: ref7
  doi: 10.1109/tpami.2016.2577031
– ident: ref21
  doi: 10.1109/TIM.2022.3158998
– ident: ref29
  doi: 10.1109/ICIP46576.2022.9897990
– ident: ref5
  doi: 10.1109/TIM.2022.3181903
– volume-title: Ultralytics/YOLOv5: v7. 0-YOLOv5 Sota Realtime Instance Segmentation
  year: 2022
  ident: ref14
– ident: ref16
  doi: 10.1109/TPAMI.2023.3290594
– ident: ref27
  doi: 10.1109/CVPR52688.2022.01330
– ident: ref31
  doi: 10.18653/v1/P19-1580
– ident: ref4
  doi: 10.1109/TITS.2023.3273286
– ident: ref6
  doi: 10.1109/ICCV.2015.169
– ident: ref18
  doi: 10.1109/TIM.2021.3052575
– ident: ref22
  doi: 10.1109/TIM.2022.3192056
– ident: ref11
  doi: 10.3390/electronics12102323
– ident: ref19
  doi: 10.1109/CVPR42600.2020.01261
– ident: ref28
  doi: 10.1109/ICCV.2017.324
– ident: ref23
  doi: 10.1109/TITS.2022.3193909
– year: 2021
  ident: ref15
  article-title: YOLOx: Exceeding YOLO series in 2021
  publication-title: arXiv:2107.08430
– ident: ref20
  doi: 10.1016/j.eswa.2021.114602
– ident: ref36
  doi: 10.1109/CVPR42600.2020.00978
– ident: ref13
  doi: 10.1109/ICIP42928.2021.9506347
– ident: ref8
  doi: 10.1109/ICCV.2017.322
– ident: ref40
  doi: 10.1016/j.autcon.2018.02.009
– ident: ref3
  doi: 10.1109/TIM.2022.3196954
SSID ssj0007647
Score 2.6807575
Snippet As self-driving vehicles become more prevalent, the speed and accuracy of detecting surrounding objects through onboard sensing technology have become...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 2-D object detection
Accuracy
Algorithms
Autonomous cars
Autonomous driving
Commercial vehicles
Feature extraction
highway traffic
Image recognition
Location awareness
Object detection
Object recognition
Safety
YOLO
Title YOLOv8-QSD: An Improved Small Object Detection Algorithm for Autonomous Vehicles Based on YOLOv8
URI https://ieeexplore.ieee.org/document/10474434
https://www.proquest.com/docview/3033623703
Volume 73
WOSCitedRecordID wos001197885000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-NapPGA2zARBlMftjLHkLt2MQxbx0fYtJGN8Em9pSl9nlFKilq0_79nJ0UVZpA2lsezlaUX3y_u_N9AHw0pfTceZEQ9aSJct4nJhMicaWWpTJeSeXjsAl9eZnf3JjvbbF6rIVBxJh8hofhMd7lu4mdh1BZL7QVULR6Dda0zppirUe1qzPVNMgUdILJLFjeSXLTu_7yjTzBVB1KqQ0P6neFg-JQlX80caSX883_fLE3sNHakazfAP8WXmC1Besr3QW34FXM7rSzbfjze_B1sMiTH1enx6xfsSaSgI5d3ZXjMRsMQzCGnWId87Iq1h__nUxv69EdI5OW9ed1qHyYzGfsF45iGh37TOTnGIk2O-_Az_Oz65OLpB2tkNjUpHViueeWrDXtjHZlOlQ-zYXOM-FzHRrsa-FQIC_RK47K6ZJE0yOU2uZ86KSR76BTTSrcBUYYCy-tz3BIzmIYrUgWiCXHUSHxgFVd6C0_dmHbvuNh_MW4iP4HNwXBUwR4ihaeLnx6XHHf9Nx4RnYnwLEi1yDRhf0loEV7KmcF0TXxtSQlt_fEsvfwOuzexFj2oVNP53gAL-2ivp1NP8Qf7gGdPc-l
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NDQR7GGMM0TGYH3jhIasde3XMW9mHNtG1oBU0nkJqn9mkLkVtur9_ZyedKk0g7S0P5yTKL77f3fk-AD6aQnruvEiIetJEOe8T0xEicYWWhTJeSeXjsAnd72eXl-ZbU6wea2EQMSaf4X64jGf5bmLnIVTWDm0FFK1-AmsHSqW8Lte6V7y6o-oWmYL2MBkGi1NJbtrDs3PyBVO1L6U2PCjgJRaKY1Ue6OJIMCcvH_lqm7DRWJKsW0P_Claw3IL1pf6CW_As5nfa2Wv4_WvQG9xmyfeLo8-sW7I6loCOXdwU4zEbjEI4hh1hFTOzStYd_5lMr6urG0ZGLevOq1D7MJnP2E-8iol07AvRn2MkWt95G36cHA8PT5NmuEJiU5NWieWeW7LXtDPaFelI-TQTOusIn-nQYl8LhwJ5gV5xVE4XJJoeoNQ24yMnjXwDq-WkxLfACGXhpfUdHJG7GIYrkg1iyXVUSExgVQvai4-d26bzeBiAMc6jB8JNTvDkAZ68gacFn-5X_K27bvxHdjvAsSRXI9GC3QWgebMvZzkRNjG2JDW3849le_D8dHjey3tn_a_v4EV4Uh1x2YXVajrH9_DU3lbXs-mH-PPdAZdl0uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLOv8-QSD%3A+An+Improved+Small+Object+Detection+Algorithm+for+Autonomous+Vehicles+Based+on+YOLOv8&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wang%2C+Hai&rft.au=Liu%2C+Chenyu&rft.au=Cai%2C+Yingfeng&rft.au=Chen%2C+Long&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTIM.2024.3379090&rft.externalDocID=10474434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon