Logical Dynamic Games: Models, Equilibria, and Potentials

Logical dynamic games (LDGs) are a class of dynamic games that incorporate logical dynamics to describe the evolution of external states. Such games can be found in a wide range of natural and engineered systems, such as the Boolean network of lactose operon in Escherichia coli . However, little att...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 69; no. 11; pp. 7584 - 7599
Main Authors: Li, Changxi, Li, Aming, Wu, Yuhu, Wang, Long
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9286, 1558-2523
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Logical dynamic games (LDGs) are a class of dynamic games that incorporate logical dynamics to describe the evolution of external states. Such games can be found in a wide range of natural and engineered systems, such as the Boolean network of lactose operon in Escherichia coli . However, little attention has been paid to LDGs in the control community. This article aims at developing a framework for the analysis and synthesis of LDGs under finite-horizon criteria. First, a general mathematical model of LDGs is constructed. Using dynamic programming theory, we prove that an LDG can be decomposed as a series of time-sliced static games, and the existence of pure dynamic Nash equilibrium (DNE) is proved to be equivalent to the existence of pure Nash equilibria of the decomposed time-sliced static games. To disentangle the circular dependence in the DNE calculation, a backward recursive method is proposed. Second, the concept of logical dynamic potential games (LDPGs) is proposed, and the connection between an LDG and its corresponding optimal control problem is established. Three verification conditions for a given LDG to be LDPG are presented, including time-sliced condition, closed-path condition, and potential equation condition. And a recursive algorithm is further designed for the verification of LDPGs via potential equation conditions. Third, to seek time-independent verification conditions, LDGs with action-independent transition properties are investigated. We prove that, if the auxiliary game constructed by the stage cost function is a state-based potential game, then the LDG is an LDPG. Finally, the effectiveness of the theoretical results is demonstrated by some numerical examples.
AbstractList Logical dynamic games (LDGs) are a class of dynamic games that incorporate logical dynamics to describe the evolution of external states. Such games can be found in a wide range of natural and engineered systems, such as the Boolean network of lactose operon in Escherichia coli . However, little attention has been paid to LDGs in the control community. This article aims at developing a framework for the analysis and synthesis of LDGs under finite-horizon criteria. First, a general mathematical model of LDGs is constructed. Using dynamic programming theory, we prove that an LDG can be decomposed as a series of time-sliced static games, and the existence of pure dynamic Nash equilibrium (DNE) is proved to be equivalent to the existence of pure Nash equilibria of the decomposed time-sliced static games. To disentangle the circular dependence in the DNE calculation, a backward recursive method is proposed. Second, the concept of logical dynamic potential games (LDPGs) is proposed, and the connection between an LDG and its corresponding optimal control problem is established. Three verification conditions for a given LDG to be LDPG are presented, including time-sliced condition, closed-path condition, and potential equation condition. And a recursive algorithm is further designed for the verification of LDPGs via potential equation conditions. Third, to seek time-independent verification conditions, LDGs with action-independent transition properties are investigated. We prove that, if the auxiliary game constructed by the stage cost function is a state-based potential game, then the LDG is an LDPG. Finally, the effectiveness of the theoretical results is demonstrated by some numerical examples.
Author Wang, Long
Wu, Yuhu
Li, Changxi
Li, Aming
Author_xml – sequence: 1
  givenname: Changxi
  orcidid: 0000-0002-8071-8439
  surname: Li
  fullname: Li, Changxi
  email: lichangxi@pku.edu.cn
  organization: Center for Systems and Control, College of Engineering, Peking University, Beijing, China
– sequence: 2
  givenname: Aming
  orcidid: 0000-0003-4045-8721
  surname: Li
  fullname: Li, Aming
  email: amingli@pku.edu.cn
  organization: Center for Systems and Control, College of Engineering, Peking University, Beijing, China
– sequence: 3
  givenname: Yuhu
  orcidid: 0000-0001-9317-1404
  surname: Wu
  fullname: Wu, Yuhu
  email: wuyuhu@dlut.edu.cn
  organization: School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Long
  orcidid: 0000-0001-5600-8157
  surname: Wang
  fullname: Wang, Long
  email: longwang@pku.edu.cn
  organization: Center for Systems and Control, College of Engineering, Peking University, Beijing, China
BookMark eNp9kDFPwzAQhS1UJNrCzsAQiZUU3zl2EraqlIJUBEOZLcdxkKs0bu106L_HVTsgBqand3rvTveNyKBznSHkFugEgJaPq-lsghSzCWMlCI4XZAicFylyZAMypBSKtMRCXJFRCOtoRZbBkJRL9221apPnQ6c2VicLtTHhKXl3tWnDQzLf7W1rK2_VQ6K6Ovl0vel6q9pwTS6bKObmrGPy9TJfzV7T5cfibTZdphpL7NOqAawZqyqsC8RG5zo3LOMF8FwrZkwcGgUATQ7RCl6JikONomEcVcYyNib3p71b73Z7E3q5dnvfxZOSAVIRn-R5TNFTSnsXgjeN3Hq7Uf4ggcojIBkBySMgeQYUK-JPRdte9dZ1vVe2_a94dypaY8yvO5zyvKDsBwTkcmw
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_nahs_2025_101603
crossref_primary_10_1007_s11768_025_00255_9
crossref_primary_10_1016_j_fraope_2025_100246
crossref_primary_10_1002_asjc_3552
crossref_primary_10_1007_s11432_024_4363_5
crossref_primary_10_1049_cth2_70076
crossref_primary_10_1002_mma_10485
crossref_primary_10_1016_j_ins_2025_122070
crossref_primary_10_1137_24M1662953
crossref_primary_10_3390_math13162653
crossref_primary_10_1109_TCNS_2025_3526328
crossref_primary_10_1109_TCYB_2025_3545689
crossref_primary_10_1007_s11432_023_4022_6
crossref_primary_10_1109_TNSE_2025_3530508
crossref_primary_10_1002_asjc_3618
crossref_primary_10_1002_asjc_3717
crossref_primary_10_1109_TSMC_2024_3489968
Cites_doi 10.1006/game.1996.0101
10.1109/TSP.2016.2551693
10.1016/j.geb.2008.02.015
10.1093/acprof:oso/9780199269181.001.0001
10.1016/S0005-1098(00)00050-9
10.1109/TAC.2010.2101430
10.1007/s13235-014-0105-3
10.1016/j.automatica.2015.03.032
10.1109/CCDC52312.2021.9602002
10.1016/S0304-4068(02)00082-4
10.1080/00207179.2017.1295319
10.1613/jair.1683
10.1016/j.automatica.2015.09.036
10.1109/TSMCB.2009.2017273
10.1016/j.automatica.2009.03.006
10.1007/978-0-85729-097-7
10.1126/science.aai7488
10.29202/fhi/10/8
10.1007/s11425-016-0264-6
10.1016/j.geb.2010.01.008
10.1109/TAC.2017.2737142
10.2307/2950588
10.1371/journal.pcbi.1003163
10.1007/s13235-017-0218-6
10.1017/CBO9781139173179
10.1006/game.1996.0044
10.1016/B978-1-55860-335-6.50027-1
10.1134/S0005117917080136
10.1073/pnas.1908936116
10.1145/1925019.1925026
10.1109/ICASSP.2010.5495613
10.32917/hmj/1206139508
10.1007/978-94-010-0189-2
10.1016/j.automatica.2018.06.028
10.1109/TNNLS.2013.2293149
10.1515/9781400874651
10.1007/978-0-8176-4834-3_22
10.1016/j.geb.2009.08.004
10.1093/oso/9780195079517.001.0001
10.1109/TAC.2013.2294821
10.1016/j.automatica.2014.05.005
10.14736/kyb-2022-2-0163
10.1098/rsif.2020.0639
10.1007/s00182-010-0233-y
10.1016/j.automatica.2016.01.074
10.1109/JSYST.2022.3176535
10.1007/978-3-319-01059-5
10.1017/S1357530902000704
10.1038/s41467-021-23548-4
10.1007/BF01737559
10.1073/pnas.36.1.48
10.1109/TCNS.2018.2808138
10.1109/CDC.2012.6426124
10.1016/j.automatica.2019.108615
10.1002/0471723940
10.1073/pnas.39.10.1953
10.1016/j.automatica.2012.08.037
10.1109/TFUZZ.2008.924330
10.1016/j.biosystems.2006.07.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2024.3391652
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 7599
ExternalDocumentID 10_1109_TAC_2024_3391652
10505780
Genre orig-research
GrantInformation_xml – fundername: Beijing Nova Program
  grantid: Z211100002121105
  funderid: 10.13039/501100005090
– fundername: Natural Science Fundation of Shandong Province
  grantid: ZR2021QF005
– fundername: National Key Research and Development Program of China
  grantid: 2022YFA1008400
– fundername: National Natural Science Foundation of China
  grantid: 62103232; 62036002; 62173062; 62173004
  funderid: 10.13039/501100001809
– fundername: Taishan Scholar Project of Shandong Province
  grantid: tsqn202312033
  funderid: 10.13039/501100010040
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-bf12d33bb2d822fc7c7e3458157ca3ee822ea111f71a3e65b6b51d26f352a4343
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001342803200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Mon Jun 30 10:14:37 EDT 2025
Tue Nov 18 21:45:47 EST 2025
Sat Nov 29 05:41:12 EST 2025
Wed Aug 27 02:02:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-bf12d33bb2d822fc7c7e3458157ca3ee822ea111f71a3e65b6b51d26f352a4343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9317-1404
0000-0003-4045-8721
0000-0002-8071-8439
0000-0001-5600-8157
PQID 3120655857
PQPubID 85475
PageCount 16
ParticipantIDs ieee_primary_10505780
crossref_citationtrail_10_1109_TAC_2024_3391652
crossref_primary_10_1109_TAC_2024_3391652
proquest_journals_3120655857
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref56
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Gibbons (ref50) 1992
ref51
ref46
ref45
ref48
Robeva (ref58) 2013
ref47
ref42
ref41
ref44
Fudenberg (ref63) 1993
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref40
ref35
ref34
ref37
Cheng (ref43) 2011
ref36
Marina (ref5) 2002
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref22
ref21
Baar (ref12) 1999
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref24
  doi: 10.1006/game.1996.0101
– ident: ref20
  doi: 10.1109/TSP.2016.2551693
– ident: ref26
  doi: 10.1016/j.geb.2008.02.015
– ident: ref10
  doi: 10.1093/acprof:oso/9780199269181.001.0001
– ident: ref29
  doi: 10.1016/S0005-1098(00)00050-9
– ident: ref49
  doi: 10.1109/TAC.2010.2101430
– ident: ref19
  doi: 10.1007/s13235-014-0105-3
– ident: ref38
  doi: 10.1016/j.automatica.2015.03.032
– ident: ref55
  doi: 10.1109/CCDC52312.2021.9602002
– ident: ref64
  doi: 10.1016/S0304-4068(02)00082-4
– ident: ref47
  doi: 10.1080/00207179.2017.1295319
– ident: ref61
  doi: 10.1613/jair.1683
– ident: ref15
  doi: 10.1016/j.automatica.2015.09.036
– ident: ref27
  doi: 10.1109/TSMCB.2009.2017273
– ident: ref35
  doi: 10.1016/j.automatica.2009.03.006
– volume-title: Analysis and Control of Boolean NetworksA Semi-Tensor Product Approach
  year: 2011
  ident: ref43
  doi: 10.1007/978-0-85729-097-7
– ident: ref41
  doi: 10.1126/science.aai7488
– ident: ref6
  doi: 10.29202/fhi/10/8
– ident: ref17
  doi: 10.1007/s11425-016-0264-6
– ident: ref56
  doi: 10.1016/j.geb.2010.01.008
– ident: ref34
  doi: 10.1109/TAC.2017.2737142
– volume-title: A Primer in Game Theory
  year: 1992
  ident: ref50
– start-page: 36
  volume-title: Proc. Aust. Joint Conf. Artif. Intell.
  year: 2002
  ident: ref5
  article-title: Dynamic decision-making in logic programming and game theory
– ident: ref53
  doi: 10.2307/2950588
– ident: ref62
  doi: 10.1371/journal.pcbi.1003163
– ident: ref16
  doi: 10.1007/s13235-017-0218-6
– ident: ref8
  doi: 10.1017/CBO9781139173179
– ident: ref30
  doi: 10.1006/game.1996.0044
– ident: ref3
  doi: 10.1016/B978-1-55860-335-6.50027-1
– ident: ref13
  doi: 10.1134/S0005117917080136
– ident: ref52
  doi: 10.1073/pnas.1908936116
– ident: ref31
  doi: 10.1145/1925019.1925026
– ident: ref18
  doi: 10.1109/ICASSP.2010.5495613
– ident: ref23
  doi: 10.32917/hmj/1206139508
– ident: ref2
  doi: 10.1007/978-94-010-0189-2
– ident: ref59
  doi: 10.1016/j.automatica.2018.06.028
– ident: ref46
  doi: 10.1109/TNNLS.2013.2293149
– ident: ref57
  doi: 10.1515/9781400874651
– ident: ref25
  doi: 10.1007/978-0-8176-4834-3_22
– ident: ref32
  doi: 10.1016/j.geb.2009.08.004
– volume-title: Game Theory
  year: 1993
  ident: ref63
– ident: ref42
  doi: 10.1093/oso/9780195079517.001.0001
– ident: ref37
  doi: 10.1109/TAC.2013.2294821
– ident: ref45
  doi: 10.1016/j.automatica.2014.05.005
– ident: ref14
  doi: 10.14736/kyb-2022-2-0163
– ident: ref28
  doi: 10.1098/rsif.2020.0639
– ident: ref54
  doi: 10.1007/s00182-010-0233-y
– ident: ref48
  doi: 10.1016/j.automatica.2016.01.074
– ident: ref21
  doi: 10.1109/JSYST.2022.3176535
– volume-title: Classics in Applied Mathematics
  year: 1999
  ident: ref12
– ident: ref22
  doi: 10.1007/978-3-319-01059-5
– ident: ref7
  doi: 10.1017/S1357530902000704
– ident: ref33
  doi: 10.1038/s41467-021-23548-4
– ident: ref51
  doi: 10.1007/BF01737559
– ident: ref44
  doi: 10.1073/pnas.36.1.48
– ident: ref36
  doi: 10.1109/TCNS.2018.2808138
– volume-title: Mathematical Concepts and Methods in Modern Biology: Using Modern Discrete Models
  year: 2013
  ident: ref58
– ident: ref39
  doi: 10.1109/CDC.2012.6426124
– ident: ref11
  doi: 10.1016/j.automatica.2019.108615
– ident: ref40
  doi: 10.1002/0471723940
– ident: ref1
  doi: 10.1073/pnas.39.10.1953
– ident: ref9
  doi: 10.1016/j.automatica.2012.08.037
– ident: ref4
  doi: 10.1109/TFUZZ.2008.924330
– ident: ref60
  doi: 10.1016/j.biosystems.2006.07.005
SSID ssj0016441
Score 2.5697339
Snippet Logical dynamic games (LDGs) are a class of dynamic games that incorporate logical dynamics to describe the evolution of external states. Such games can be...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7584
SubjectTerms Algorithms
Boolean functions
Cost function
Decomposition
dynamic games
Dynamic Nash equilibrium (DNE)
Dynamic programming
Dynamical systems
E coli
finite-horizon optimization
Game theory
Games
Heuristic algorithms
Lactose
logical dynamic systems (LDSs)
Mathematical models
Nash equilibrium
Optimal control
potential games
Power system dynamics
Recursive methods
Stochastic processes
Verification
Title Logical Dynamic Games: Models, Equilibria, and Potentials
URI https://ieeexplore.ieee.org/document/10505780
https://www.proquest.com/docview/3120655857
Volume 69
WOSCitedRecordID wos001342803200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UeNCDnxhRND14MWGwdbRdvREEPRDCAQ23pWu7hISAwvDv97UdBGM08bYtbbP8Xvs--r4QupdgceWGskBLqoM2MXGQaBUGVIYyp0So0BV7fhvw4TCZTMSoTFZ3uTDGGBd8Zpr20fny9UKt7VUZnHCrTidgoe9zznyy1tZlYAW7Z7twgkmy9UmGojXudMESJO1mbNNMKfkmg1xTlR-c2ImX_sk_f-wUHZd6JO54wp-hPTM_R0c71QUvkBh4toaffNd5_GwjYh-xbX82WzVw72M9dRH_soHlXOPRorChQ7Afq-i13xt3X4KyU0KgiCBFkOUR0XGcZUSDwM8VV9zEbZpElCsZGwMfjQSulvMIXhnNWEYjTVgO6pe0uaWXqDJfzM0VwpIpzXKRgerFYQUpjBGGMwYE5BmYMzXU2mCXqrKMuO1mMUudORGKFNBOLdppiXYNPWxnvPsSGn-MrVp0d8Z5YGuovqFPWh6yVRpHBBQosHf49S_TbtChXd3nDtZRpViuzS06UJ_FdLW8c_vnCx8dwAM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8MmqgHPzGiqDt4MWGwdeu6eiMIYpyEAxpuS9d2CQkZCsO_39duEIzRxNu2tNvyXvve-_V9IXTLAXGligS25ETaPlaeHUrh2IQ7PCWYCccUe36L6GAQjsdsWCarm1wYpZQJPlNNfWl8-XImlvqoDHa4NqdDQOjbxPexU6RrrZ0GWrUXghf2MA7XXkmHtUbtDmBB7Dc9nWhK8DctZNqq_JDFRsH0Dv_5a0fooLQkrXbB-mO0pbITtL9RX_AUsagQbNZD0XfeetQxsfeWboA2XTSs7sdyYmL-ecPimbSGs1wHD8GKrKLXXnfU6dtlrwRbYIZzO0ldLD0vSbAElZ8KKqjyfBK6hAruKQUPFQe5llIXbgOSBAlxJQ5SMMC4zi49Q5VslqlzZPFAyCBlCRhfFN7AmVJM0SAAFtIEAE0NtVa0i0VZSFz3s5jGBlA4LAZqx5racUntGrpbz3gvimj8MbaqqbsxriBsDdVX_InLbbaIPReDCQWIh178Mu0G7fZHL1EcPQ2eL9Ge_lKRSVhHlXy-VFdoR3zmk8X82qylL0wfw0o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Logical+Dynamic+Games%3A+Models%2C+Equilibria%2C+and+Potentials&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Li%2C+Changxi&rft.au=Li%2C+Aming&rft.au=Wu%2C+Yuhu&rft.au=Wang%2C+Long&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=69&rft.issue=11&rft.spage=7584&rft.epage=7599&rft_id=info:doi/10.1109%2FTAC.2024.3391652&rft.externalDocID=10505780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon