An Exact Double-Oracle Algorithm for Zero-Sum Extensive-Form Games with Imperfect Information

Developing scalable solution algorithms is one of the central problems in computational game theory. We present an iterative algorithm for computing an exact Nash equilibrium for two-player zero-sum extensive-form games with imperfect information. Our approach combines two key elements: (1) the comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of artificial intelligence research Jg. 51; S. 829 - 866
Hauptverfasser: Bosansky, B., Kiekintveld, C., Lisy, V., Pechoucek, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: San Francisco AI Access Foundation 01.01.2014
Schlagworte:
ISSN:1076-9757, 1076-9757, 1943-5037
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Developing scalable solution algorithms is one of the central problems in computational game theory. We present an iterative algorithm for computing an exact Nash equilibrium for two-player zero-sum extensive-form games with imperfect information. Our approach combines two key elements: (1) the compact sequence-form representation of extensive-form games and (2) the algorithmic framework of double-oracle methods. The main idea of our algorithm is to restrict the game by allowing the players to play only selected sequences of available actions. After solving the restricted game, new sequences are added by finding best responses to the current solution using fast algorithms. We experimentally evaluate our algorithm on a set of games inspired by patrolling scenarios, board, and card games. The results show significant runtime improvements in games admitting an equilibrium with small support, and substantial improvement in memory use even on games with large support. The improvement in memory use is particularly important because it allows our algorithm to solve much larger game instances than existing linear programming methods. Our main contributions include (1) a generic sequence-form double-oracle algorithm for solving zero-sum extensive-form games; (2) fast methods for maintaining a valid restricted game model when adding new sequences; (3) a search algorithm and pruning methods for computing best-response sequences; (4) theoretical guarantees about the convergence of the algorithm to a Nash equilibrium; (5) experimental analysis of our algorithm on several games, including an approximate version of the algorithm.
AbstractList Developing scalable solution algorithms is one of the central problems in computational game theory. We present an iterative algorithm for computing an exact Nash equilibrium for two-player zero-sum extensive-form games with imperfect information. Our approach combines two key elements: (1) the compact sequence-form representation of extensive-form games and (2) the algorithmic framework of double-oracle methods. The main idea of our algorithm is to restrict the game by allowing the players to play only selected sequences of available actions. After solving the restricted game, new sequences are added by finding best responses to the current solution using fast algorithms. We experimentally evaluate our algorithm on a set of games inspired by patrolling scenarios, board, and card games. The results show significant runtime improvements in games admitting an equilibrium with small support, and substantial improvement in memory use even on games with large support. The improvement in memory use is particularly important because it allows our algorithm to solve much larger game instances than existing linear programming methods. Our main contributions include (1) a generic sequence-form double-oracle algorithm for solving zero-sum extensive-form games; (2) fast methods for maintaining a valid restricted game model when adding new sequences; (3) a search algorithm and pruning methods for computing best-response sequences; (4) theoretical guarantees about the convergence of the algorithm to a Nash equilibrium; (5) experimental analysis of our algorithm on several games, including an approximate version of the algorithm.
Developing scalable solution algorithms is one of the central problems in computational game theory. We present an iterative algorithm for computing an exact Nash equilibrium for two-player zero-sum extensive-form games with imperfect information. Our approach combines two key elements: (1) the compact sequence-form representation of extensive-form games and (2) the algorithmic framework of double-oracle methods. The main idea of our algorithm is to restrict the game by allowing the players to play only selected sequences of available actions. After solving the restricted game, new sequences are added by finding best responses to the current solution using fast algorithms. We experimentally evaluate our algorithm on a set of games inspired by patrolling scenarios, board, and card games. The results show significant runtime improvements in games admitting an equilibrium with small support, and substantial improvement in memory use even on games with large support. The improvement in memory use is particularly important because it allows our algorithm to solve much larger game instances than existing linear programming methods. Our main contributions include (1) a generic sequence-form double-oracle algorithm for solving zero-sum extensive-form games; (2) fast methods for maintaining a valid restricted game model when adding new sequences; (3) a search algorithm and pruning methods for computing best-response sequences; (4) theoretical guarantees about the convergence of the algorithm to a Nash equilibrium; (5) experimental analysis of our algorithm on several games, including an approximate version of the algorithm.
Author Kiekintveld, C.
Pechoucek, M.
Bosansky, B.
Lisy, V.
Author_xml – sequence: 1
  givenname: B.
  surname: Bosansky
  fullname: Bosansky, B.
– sequence: 2
  givenname: C.
  surname: Kiekintveld
  fullname: Kiekintveld, C.
– sequence: 3
  givenname: V.
  surname: Lisy
  fullname: Lisy, V.
– sequence: 4
  givenname: M.
  surname: Pechoucek
  fullname: Pechoucek, M.
BookMark eNptkE1LAzEQhoNUsK0e_AcBTx623c8mOZba1kKhB_UiyJJkJ5qyu6lJ1o9_b9Z6EPEwzDA87zvDO0KD1rSA0GUST5JZkk33XNtJnhNygoZJTGYRIwUZ_JrP0Mi5fRwnLE_pED3NW7z84NLjG9OJGqKd5bIGPK-fjdX-pcHKWPwI1kR3XRNQD63TbxCtjG3wmjfg8Hvg8KY5gFUQjDZtkDTca9Oeo1PFawcXP32MHlbL-8VttN2tN4v5NpIpS30kqqISrKIKOGWpVJQCEEGpIoKrPA3FiMxkTgtSyExwWmVhQ4RgjAqgkI3R1dH3YM1rB86Xe9PZNpws06LIY8bSWRao6ZGS1jhnQZVS--8_veW6LpO47DMs-wzLPsOguP6jOFjdcPv5D_sFhop2CQ
CitedBy_id crossref_primary_10_1016_j_apenergy_2025_126051
crossref_primary_10_1016_j_artint_2016_03_005
crossref_primary_10_1016_j_asoc_2022_109846
crossref_primary_10_1109_TDSC_2023_3299225
crossref_primary_10_1016_j_artint_2020_103248
crossref_primary_10_1109_TRO_2025_3567506
crossref_primary_10_1007_s13235_023_00519_6
crossref_primary_10_1016_j_ejor_2019_02_017
crossref_primary_10_1016_j_ejor_2020_10_015
crossref_primary_10_1016_j_cose_2019_101578
crossref_primary_10_1016_j_cose_2019_101579
crossref_primary_10_1016_j_ijepes_2023_109294
crossref_primary_10_1016_j_paid_2020_110343
crossref_primary_10_3390_electronics11060896
crossref_primary_10_1007_s10107_018_1336_7
crossref_primary_10_1007_s11704_020_9307_6
crossref_primary_10_1002_nav_21834
crossref_primary_10_1016_j_ijar_2017_11_010
crossref_primary_10_1016_j_neucom_2023_126471
crossref_primary_10_1016_j_artint_2022_103838
ContentType Journal Article
Copyright 2014. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
Copyright_xml – notice: 2014. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1613/jair.4477
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1076-9757
1943-5037
EndPage 866
ExternalDocumentID 10_1613_jair_4477
GroupedDBID .DC
29J
2WC
5GY
5VS
AAKMM
AAKPC
AALFJ
AAYFX
AAYXX
ACGFO
ACM
ADBBV
ADBSK
ADMLS
AEFXT
AEJOY
AENEX
AFFHD
AFKRA
AFWXC
AKRVB
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
EBS
EJD
F5P
FRJ
FRP
GROUPED_DOAJ
GUFHI
HCIFZ
K7-
KQ8
LHSKQ
LPJ
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
RNS
TR2
XSB
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c292t-bd5db9d8fea892cf88ee7b88f7baf42af497c3c48575c3ba8d34977bb998be8e3
IEDL.DBID K7-
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350466400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1076-9757
IngestDate Sun Nov 09 08:24:24 EST 2025
Tue Nov 18 22:30:21 EST 2025
Sat Nov 29 05:27:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-bd5db9d8fea892cf88ee7b88f7baf42af497c3c48575c3ba8d34977bb998be8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2554099263?pq-origsite=%requestingapplication%
PQID 2554099263
PQPubID 5160723
PageCount 38
ParticipantIDs proquest_journals_2554099263
crossref_citationtrail_10_1613_jair_4477
crossref_primary_10_1613_jair_4477
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
PublicationTitle The Journal of artificial intelligence research
PublicationYear 2014
Publisher AI Access Foundation
Publisher_xml – name: AI Access Foundation
SSID ssj0019428
Score 2.4162772
Snippet Developing scalable solution algorithms is one of the central problems in computational game theory. We present an iterative algorithm for computing an exact...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 829
SubjectTerms Algorithms
Artificial intelligence
Card games
Computation
Equilibrium
Game theory
Games
Iterative algorithms
Iterative methods
Linear programming
Search algorithms
Title An Exact Double-Oracle Algorithm for Zero-Sum Extensive-Form Games with Imperfect Information
URI https://www.proquest.com/docview/2554099263
Volume 51
WOSCitedRecordID wos000350466400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: DOA
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: K7-
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: BENPR
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: PIMPY
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6-Dl58i_VRgnjwEm2zqUlOUqVVQWvxhQqybJJZH9RWt6v4851sU0UQLx6WhezsEnaSmW8emSFkwzllK04IhnfOhIgk0xIEAwDloAJgCofb1bFstdT1tW4Hh1s_pFUOZWIhqF3Peh_5NkJfNEU034l2X16Z7xrlo6uhhcYoGa9yFMI-KCvZVxRBCz44Cid3cAY1GSoLoQbbfkoesy0hpPypj36K40LHNKf_O7sZMhXQJa0PlsMsGYHuHJkedm6gYSPPk7t6lzY-EptTBNCmA-w0S_AFWu_c41fzh2eKWJbeQtZj52_PSBry3FkTIS498Jm11Htw6RGi7sxnhNBwrsnzeYFcNhsX-4csNFpglmueM-NqzminUkiU5jZVCkAapVJpklRwvLS0kRW-m6eNTKJchCPSGLTVDCiIFslYt9eFJUKrPIVKNQGlFeo9I02Nu6JGnEa7xDlRIpvD3x3bUIXcN8PoxN4aQc7EnjOx50yJrH-RvgxKb_xGtDpkSBx2Xz_-5sby349XyCQCIDFwqaySsTx7gzUyYd_zx35WJuN7jVb7rFzY6eViaeFY--ikffMJ_9LZzA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dS9xAEB_UFvSl1o9SW9suRcGX1XOz5-4-FDlarx53vQp-IILE7O7EWs47m4u1_af6N3Y2H4ogffOhDyGQbAKT_WVmfrOzMwAr3mvX8FJyOgsuZaS4USg5ImqPDURbBNyOeqrf18fHZm8C_tR7YUJaZa0TC0XtRy7EyDfI9SUqYsRWtH31g4euUWF1tW6hUcKii79viLKNP3Q-0fyuCtHeOfi4y6uuAtwJI3JufdNb43WKiTbCpVojKqt1qmySSkGHUS5yMrSudJFNtI_oirKWiIlFjRG9dxKeyEir8F91Fb9dtTBSlFvv1BZJ3FRVJSOymBvfk4tsXUql7tu_--q_sGnt2f_tazyHZ5X3zFol3OdgAofzMFt3pmCVolqA09aQ7fxKXM6IINgB8q9ZQg-w1uCcpMi_XTLy1dkJZiO-f31JQ6s8ft4mF559DpnDLESoWYdYRRYyXli1byvgeBEOH0XIFzA1HA3xJbBNkWJjM0FtNNl1q2xT-KIGniHe5b1cgrV6emNXVVkPzT4GcWBbhIQ4ICEOSFiC97dDr8rSIg8NWq4BEFfaZRzfzf6rf99-B9O7B196ca_T776GGXL2ZBk-WoapPLvGN_DU_cwvxtnbAsgMzh4bK38Be0c2YQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Exact+Double-Oracle+Algorithm+for+Zero-Sum+Extensive-Form+Games+with+Imperfect+Information&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Bosansky%2C+B.&rft.au=Kiekintveld%2C+C.&rft.au=Lisy%2C+V.&rft.au=Pechoucek%2C+M.&rft.date=2014-01-01&rft.issn=1076-9757&rft.eissn=1076-9757&rft.volume=51&rft.spage=829&rft.epage=866&rft_id=info:doi/10.1613%2Fjair.4477&rft.externalDBID=n%2Fa&rft.externalDocID=10_1613_jair_4477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon