Attacking Defocus Detection With Blur-Aware Transformation for Defocus Deblurring

Previous fully-supervised defocus deblurring has made significant progress. However, training such deep models requires abundant paired ground truth, which is expensive and error-prone. This paper makes an attempt to train a defocus deblurring model without using paired ground truth and any other un...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on multimedia Ročník 26; s. 1 - 11
Hlavní autori: Zhao, Wenda, Hu, Guang, Wei, Fei, Wang, Haipeng, He, You, Lu, Huchuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1520-9210, 1941-0077
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Previous fully-supervised defocus deblurring has made significant progress. However, training such deep models requires abundant paired ground truth, which is expensive and error-prone. This paper makes an attempt to train a defocus deblurring model without using paired ground truth and any other unpaired data. Related reblur-to-deblur schemes generally use physics-based reblur or GAN-based reblur, suffering from the robustness of blur kernel and hallucination generated by GAN. Besides, the domain gap between the realistic blurred image and reblurred image hinders deblurring performance. Addressing these challenges, we propose a weakly-supervised defocus deblurring framework via defocus detection attack. On one hand, we build a focused area detection attack (FADA) to enforce the focused area to reblur, thereby reversing its detection result by a pretrained defocus blur detection network. Moreover, we introduce a blur-aware transfer modulated from the defocused region to help FADA render a robust reblurred region. On the other hand, we implement a defocused region detection attack to guide the realistic blurred region to deblur in the process of training deblurring network with simulated-paired areas. Extensive experiments on three widely-used datasets verify the effectiveness of our framework. Code is available at: https://github.com/wdzhao123/ADDBAT.
AbstractList Previous fully-supervised defocus deblurring has made significant progress. However, training such deep models requires abundant paired ground truth, which is expensive and error-prone. This paper makes an attempt to train a defocus deblurring model without using paired ground truth and any other unpaired data. Related reblur-to-deblur schemes generally use physics-based reblur or GAN-based reblur, suffering from the robustness of blur kernel and hallucination generated by GAN. Besides, the domain gap between the realistic blurred image and reblurred image hinders deblurring performance. Addressing these challenges, we propose a weakly-supervised defocus deblurring framework via defocus detection attack. On one hand, we build a focused area detection attack (FADA) to enforce the focused area to reblur, thereby reversing its detection result by a pretrained defocus blur detection network. Moreover, we introduce a blur-aware transfer modulated from the defocused region to help FADA render a robust reblurred region. On the other hand, we implement a defocused region detection attack to guide the realistic blurred region to deblur in the process of training deblurring network with simulated-paired areas. Extensive experiments on three widely-used datasets verify the effectiveness of our framework. Code is available at: https://github.com/wdzhao123/ADDBAT.
Previous fully-supervised defocus deblurring has made significant progress. However, training such deep models requires abundant paired ground truth, which is expensive and error-prone. This paper makes an attempt to train a defocus deblurring model without using paired ground truth and any other unpaired data. Related reblur-to-deblur schemes generally use physics-based reblur or GAN-based reblur, suffering from the robustness of blur kernel and hallucination generated by GAN. Besides, the domain gap between the realistic blurred image and reblurred image hinders deblurring performance. Addressing these challenges, we propose a weakly-supervised defocus deblurring framework via defocus detection attack. On one hand, we build a focused area detection attack (FADA) to enforce the focused area to reblur, thereby reversing its detection result by a pretrained defocus blur detection network. Moreover, we introduce a blur-aware transfer modulated from the defocused region to help FADA render a robust reblurred region. On the other hand, we implement a defocused region detection attack to guide the realistic blurred region to deblur in the process of training deblurring network with simulated-paired areas. Extensive experiments on three widely-used datasets verify the effectiveness of our framework.
Author He, You
Zhao, Wenda
Lu, Huchuan
Wang, Haipeng
Hu, Guang
Wei, Fei
Author_xml – sequence: 1
  givenname: Wenda
  orcidid: 0000-0002-7463-6103
  surname: Zhao
  fullname: Zhao, Wenda
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Guang
  surname: Hu
  fullname: Hu, Guang
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
– sequence: 3
  givenname: Fei
  surname: Wei
  fullname: Wei, Fei
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Haipeng
  orcidid: 0000-0003-4201-1122
  surname: Wang
  fullname: Wang, Haipeng
  organization: Research Institute of Information Fusion, Naval Aviation University, Yantai, China
– sequence: 5
  givenname: You
  orcidid: 0000-0002-6111-340X
  surname: He
  fullname: He, You
  organization: Research Institute of Information Fusion, Naval Aviation University, Yantai, China
– sequence: 6
  givenname: Huchuan
  orcidid: 0000-0002-6668-9758
  surname: Lu
  fullname: Lu, Huchuan
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
BookMark eNp9kL1PwzAQxS1UJNrCzsBQiTnFH0kcj6V8Sq0QUhFjdLHPkNImxXaE-O9xW4aKgek96d7v7vQGpNe0DRJyzuiYMaquFvP5mFMuxkKINOoR6TOVsoRSKXvRZ5wmijN6QgbeLyllaUZlnzxPQgD9UTdvoxu0re581IA61G0zeq3D--h61blk8gUORwsHjbetW8NuHN0BVMWci3tOybGFlcezXx2Sl7vbxfQhmT3dP04ns0RzxUNS6SyvwEChoahASMzQaKhMWuS2UAwrw60FAMUsGpFRyyVwLhHBYJYbI4bkcr9349rPDn0ol23nmniy5EoKLopc8ZjK9yntWu8d2lLXYfd-cFCvSkbLbX1lrK_c1lf-1hdB-gfcuHoN7vs_5GKP1Ih4EBe8SGUqfgD_cn8U
CODEN ITMUF8
CitedBy_id crossref_primary_10_1007_s00371_024_03632_8
crossref_primary_10_3390_electronics13122265
crossref_primary_10_3390_wevj16020072
crossref_primary_10_1109_TCSVT_2025_3544030
crossref_primary_10_1109_ACCESS_2024_3475640
crossref_primary_10_1007_s11263_025_02522_3
Cites_doi 10.1109/WACV51458.2022.00016
10.1007/978-3-030-58607-2_36
10.1109/TPAMI.2019.2906588
10.1109/TIP.2017.2771563
10.1109/CVPR.2014.379
10.1109/TMM.2020.2985541
10.1109/CVPR.2019.00911
10.1109/CVPR.2019.00584
10.1109/CVPR42600.2020.00383
10.1109/CVPR.2019.01250
10.1109/TNNLS.2022.3151099
10.1109/TIP.2021.3127850
10.1109/cvpr46437.2021.00751
10.1007/978-3-031-20056-4_33
10.1109/ICCV.2019.00492
10.1109/TIP.2020.3045630
10.1109/ICME52920.2022.9859631
10.1007/978-3-030-58601-0_44
10.1109/CVPR46437.2021.00686
10.1109/JAS.2022.105563
10.1109/TMM.2020.3045303
10.1109/CVPR46437.2021.00489
10.1109/tmm.2023.3248162
10.1109/CVPR.2019.00453
10.1109/tnnls.2022.3219059
10.1016/j.neucom.2018.01.041
10.1109/ICCV.2019.00526
10.1109/TIP.2021.3084101
10.1109/CVPR42600.2020.00037
10.1109/CVPR46437.2021.01609
10.5555/2969033.2969125
10.1109/TPAMI.2020.3014629
10.1109/CVPR.2018.00324
10.1109/ICCV48922.2021.00264
10.1609/aaai.v37i2.25281
10.1109/CVPR.2018.00084
10.1109/TCSVT.2015.2406231
10.1007/978-3-030-58621-8_16
10.1007/978-3-030-01258-8_18
10.1109/TIP.2019.2942505
10.1109/ICCPHOT.2018.8368468
10.1109/CVPR.2018.00325
10.1609/aaai.v34i07.6884
10.1016/j.jvcir.2016.01.002
10.1109/CVPR46437.2021.01029
10.1109/TCSVT.2021.3074799
10.1109/ICCV.2017.574
10.1109/CVPR.2019.00281
10.1109/SP.2017.49
10.1109/CVPR.2015.7298665
10.1111/cgf.13567
10.1109/TCSVT.2021.3095347
10.1145/3052973.3053009
10.1109/CVPR52688.2022.00564
10.1109/CVPR46437.2021.00207
10.1007/978-3-030-58607-2_7
10.1109/CVPR52688.2022.01582
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2023.3334023
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 11
ExternalDocumentID 10_1109_TMM_2023_3334023
10328474
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62176038; 61801077; U1903215
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
VH1
ZY4
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-bc56bada8ca8ba37e5edcabd486f891ebd2ffaaa91fed350f27a227eeade56dd3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001189435600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-9210
IngestDate Sun Nov 09 08:24:11 EST 2025
Tue Nov 18 22:43:53 EST 2025
Sat Nov 29 03:10:13 EST 2025
Wed Aug 27 02:17:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-bc56bada8ca8ba37e5edcabd486f891ebd2ffaaa91fed350f27a227eeade56dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6668-9758
0000-0003-4201-1122
0000-0002-6111-340X
0000-0002-7463-6103
PQID 2973238692
PQPubID 75737
PageCount 11
ParticipantIDs ieee_primary_10328474
crossref_primary_10_1109_TMM_2023_3334023
proquest_journals_2973238692
crossref_citationtrail_10_1109_TMM_2023_3334023
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Simonyan (ref57) 2014
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Madry (ref47) 2017
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref34
  doi: 10.1109/WACV51458.2022.00016
– ident: ref16
  doi: 10.1007/978-3-030-58607-2_36
– ident: ref26
  doi: 10.1109/TPAMI.2019.2906588
– ident: ref29
  doi: 10.1109/TIP.2017.2771563
– ident: ref24
  doi: 10.1109/CVPR.2014.379
– ident: ref14
  doi: 10.1109/TMM.2020.2985541
– ident: ref43
  doi: 10.1109/CVPR.2019.00911
– ident: ref59
  doi: 10.1109/CVPR.2019.00584
– ident: ref1
  doi: 10.1109/CVPR42600.2020.00383
– ident: ref27
  doi: 10.1109/CVPR.2019.01250
– ident: ref36
  doi: 10.1109/TNNLS.2022.3151099
– year: 2017
  ident: ref47
  article-title: Towards deep learning models resistant to adversarial attacks
– ident: ref32
  doi: 10.1109/TIP.2021.3127850
– ident: ref48
  doi: 10.1109/cvpr46437.2021.00751
– ident: ref38
  doi: 10.1007/978-3-031-20056-4_33
– ident: ref54
  doi: 10.1109/ICCV.2019.00492
– ident: ref4
  doi: 10.1109/TIP.2020.3045630
– ident: ref9
  doi: 10.1109/ICME52920.2022.9859631
– ident: ref17
  doi: 10.1007/978-3-030-58601-0_44
– ident: ref18
  doi: 10.1109/CVPR46437.2021.00686
– ident: ref31
  doi: 10.1109/JAS.2022.105563
– ident: ref35
  doi: 10.1109/TMM.2020.3045303
– ident: ref12
  doi: 10.1109/CVPR46437.2021.00489
– ident: ref13
  doi: 10.1109/tmm.2023.3248162
– ident: ref56
  doi: 10.1109/CVPR.2019.00453
– ident: ref51
  doi: 10.1109/tnnls.2022.3219059
– ident: ref42
  doi: 10.1016/j.neucom.2018.01.041
– ident: ref52
  doi: 10.1109/ICCV.2019.00526
– ident: ref15
  doi: 10.1109/TIP.2021.3084101
– ident: ref10
  doi: 10.1109/CVPR42600.2020.00037
– ident: ref55
  doi: 10.1109/CVPR46437.2021.01609
– ident: ref45
  doi: 10.5555/2969033.2969125
– ident: ref21
  doi: 10.1109/TPAMI.2020.3014629
– ident: ref40
  doi: 10.1109/CVPR.2018.00324
– ident: ref7
  doi: 10.1109/ICCV48922.2021.00264
– ident: ref37
  doi: 10.1609/aaai.v37i2.25281
– ident: ref53
  doi: 10.1109/CVPR.2018.00084
– ident: ref3
  doi: 10.1109/TCSVT.2015.2406231
– ident: ref11
  doi: 10.1007/978-3-030-58621-8_16
– ident: ref23
  doi: 10.1007/978-3-030-01258-8_18
– ident: ref20
  doi: 10.1109/TIP.2019.2942505
– ident: ref22
  doi: 10.1109/ICCPHOT.2018.8368468
– ident: ref25
  doi: 10.1109/CVPR.2018.00325
– ident: ref58
  doi: 10.1609/aaai.v34i07.6884
– ident: ref28
  doi: 10.1016/j.jvcir.2016.01.002
– year: 2014
  ident: ref57
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref49
  doi: 10.1109/CVPR46437.2021.01029
– ident: ref2
  doi: 10.1109/TCSVT.2021.3074799
– ident: ref41
  doi: 10.1109/ICCV.2017.574
– ident: ref44
  doi: 10.1109/CVPR.2019.00281
– ident: ref46
  doi: 10.1109/SP.2017.49
– ident: ref30
  doi: 10.1109/CVPR.2015.7298665
– ident: ref19
  doi: 10.1111/cgf.13567
– ident: ref39
  doi: 10.1109/TCSVT.2021.3095347
– ident: ref50
  doi: 10.1145/3052973.3053009
– ident: ref33
  doi: 10.1109/CVPR52688.2022.00564
– ident: ref6
  doi: 10.1109/CVPR46437.2021.00207
– ident: ref5
  doi: 10.1007/978-3-030-58607-2_7
– ident: ref8
  doi: 10.1109/CVPR52688.2022.01582
SSID ssj0014507
Score 2.431723
Snippet Previous fully-supervised defocus deblurring has made significant progress. However, training such deep models requires abundant paired ground truth, which is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Blur-aware transfer
Bridges
Convolution
Defocus detection attack
Feature extraction
Generative adversarial networks
Robustness
Task analysis
Training
Weakly-supervised defocus deblurring
Title Attacking Defocus Detection With Blur-Aware Transformation for Defocus Deblurring
URI https://ieeexplore.ieee.org/document/10328474
https://www.proquest.com/docview/2973238692
Volume 26
WOSCitedRecordID wos001189435600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014507
  issn: 1520-9210
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH4CxAADN6JcysDC4DaNnTgeyyUGQCCVY4t8PEOlKqA2hb-P7aSoCIHEFEvxsyJ_sd_9HsBRrK1OqVFESkoJs5QTXwScoOHIhYq5DaWUHq74zU3-9CRum2T1kAuDiCH4DNt-GHz55lVPvKmsE4q_Mc7mYZ7zrE7W-nIZsDTkRjt-FBPhFJmpTzIWnf71ddu3CW9TSp2-RL_xoNBU5cdNHNjLxeo_P2wNVho5MurVwK_DHJYbsDrt0RA1R3YDlmcKDm7CXa-qpPbW8egMrVt37J5ViMYqo8dB9RKdDCcj0vuQI4z6MzKte-1GM0Rq6G2H5fMW3F-c908vSdNUgehEJBVROs2UNDLXMleSckzRaKkMyzObiy4qk1grpRRdi4amsU24TBKOPrA6zYyh27BQvpa4A1HaRSaFZf6WYMIqadOMJjwzuelKpLQFnek2F7qpOO4bXwyLoHnEonDAFB6YogGmBcdfFG91tY0_5m55IGbm1Ri0YH8KZdGcx3HhO3Q54SQTye4vZHuw5FZntXVlHxaq0QQPYFG_V4Px6DD8ap8SndLI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aGxLwsMEYouxCHnjhwW3qSxw_ll20ibYCqcDeIl-OYVKVoTaFv4_tpFPRBNKeYik-iZUv9rmfA_Aut94K5gzRmjHCPZMkFgEn6CRKZXLpUymlr2M5nZbX1-pTl6yecmEQMQWfYT8Oky_f3dpVNJUNUvE3Lvkj2BGc07xN17pzGnCRsqMDR8qJCqrM2iuZq8FsMunHRuF9xljQmNhfXCi1Vbl3FicGc7H3wKU9h91OksxGLfQvYAvrfdhbd2nIuk27D882Sg6-hM-jptE22sezM_ThuctwbVI8Vp19u2l-ZB_mqwUZ_dYLzGYbUm24HUYbRGYerYf19wP4cnE-O70kXVsFYqmiDTFWFEY7XVpdGs0kCnRWG8fLwpdqiMZR77XWaujRMZF7KjWlEmNotSicY69gu76t8TVkYohcK8_jOcGVN9qLglFZuNINNTLWg8H6M1e2qzkeW1_Mq6R75KoKwFQRmKoDpgfv7yh-tvU2_jP3IAKxMa_FoAdHayirbkcuq9ijK4gnhaJv_kH2Fp5czibjanw1_XgIT8ObeGtrOYLtZrHCY3hsfzU3y8VJ-u3-ADC31g8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attacking+Defocus+Detection+With+Blur-Aware+Transformation+for+Defocus+Deblurring&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Zhao%2C+Wenda&rft.au=Hu%2C+Guang&rft.au=Wei%2C+Fei&rft.au=Wang%2C+Haipeng&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=26&rft.spage=5450&rft_id=info:doi/10.1109%2FTMM.2023.3334023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon