Cosmo: a concurrent separation logic for multicore OCaml
Multicore OCaml extends OCaml with support for shared-memory concurrency. It is equipped with a weak memory model, for which an operational semantics has been published. This begs the question: what reasoning rules can one rely upon while writing or verifying Multicore OCaml code? To answer it, we i...
Saved in:
| Published in: | Proceedings of ACM on programming languages Vol. 4; no. ICFP; pp. 1 - 29 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
ACM
02.08.2020
|
| Subjects: | |
| ISSN: | 2475-1421, 2475-1421 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Multicore OCaml extends OCaml with support for shared-memory concurrency. It is equipped with a weak memory model, for which an operational semantics has been published. This begs the question: what reasoning rules can one rely upon while writing or verifying Multicore OCaml code? To answer it, we instantiate Iris, a modern descendant of Concurrent Separation Logic, for Multicore OCaml. This yields a low-level program logic whose reasoning rules expose the details of the memory model. On top of it, we build a higher-level logic, Cosmo, which trades off some expressive power in return for a simple set of reasoning rules that allow accessing nonatomic locations in a data-race-free manner, exploiting the sequentially-consistent behavior of atomic locations, and exploiting the release/acquire behavior of atomic locations. Cosmo allows both low-level reasoning, where the details of the Multicore OCaml memory model are apparent, and high-level reasoning, which is independent of this memory model. We illustrate this claim via a number of case studies: we verify several implementations of locks with respect to a classic, memory-model-independent specification. Thus, a coarse-grained application that uses locks as the sole means of synchronization can be verified in the Concurrent-Separation-Logic fragment of Cosmo, without any knowledge of the weak memory model. |
|---|---|
| ISSN: | 2475-1421 2475-1421 |
| DOI: | 10.1145/3408978 |