Bi-AM-RRT: A Fast and Efficient Sampling-Based Motion Planning Algorithm in Dynamic Environments

The efficiency of sampling-based motion planning brings wide application in autonomous mobile robots. The conventional rapidly exploring random tree (RRT) algorithm and its variants have gained significant successes, but there are still challenges for the optimal motion planning of mobile robots in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on intelligent vehicles Ročník 9; číslo 1; s. 1282 - 1293
Hlavní autori: Zhang, Ying, Wang, Heyong, Yin, Maoliang, Wang, Jiankun, Hua, Changchun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2379-8858, 2379-8904
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The efficiency of sampling-based motion planning brings wide application in autonomous mobile robots. The conventional rapidly exploring random tree (RRT) algorithm and its variants have gained significant successes, but there are still challenges for the optimal motion planning of mobile robots in dynamic environments. In this paper, based on Bidirectional RRT and the use of an assisting metric (AM), we propose a novel motion planning algorithm, namely Bi-AM-RRT*. Different from the existing RRT-based methods, the AM with a larger connection distance is introduced in this paper to optimize the performance of robot motion planning in dynamic environments with obstacles. On this basis, the bidirectional search sampling strategy is employed to reduce the search time. Further, we present a new rewiring method to shorten path lengths. The effectiveness and efficiency of the proposed Bi-AM-RRT* are proved through comparative experiments in different environments. Experimental results show that the Bi-AM-RRT* algorithm can achieve better performance in terms of path length and search time, and always finds near-optimal paths with the shortest search time when the diffusion metric is used as the AM.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2379-8858
2379-8904
DOI:10.1109/TIV.2023.3307283