On the Foundation of Sparsity Constrained Sensing- Part I: Sampling Theory and Robust Remainder Problem

In the first part of the series papers, we set out to answer the following fundamental question: for constrained sampling, what kind of signal can be uniquely represented or recovered by the (distributed) discrete sample sequence(s) obtained? We term this study as sparsity constrained sensing or spa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 71; pp. 1263 - 1276
Main Authors: Xiao, Hanshen, Zhang, Yaowen, Zhou, Beining, Xiao, Guoqiang
Format: Journal Article
Language:English
Published: New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the first part of the series papers, we set out to answer the following fundamental question: for constrained sampling, what kind of signal can be uniquely represented or recovered by the (distributed) discrete sample sequence(s) obtained? We term this study as sparsity constrained sensing or sparse sensing . It is different from compressed sensing , which exploits the sparse representation of a signal to reduce sample complexity (compressed sampling or acquisition). We use sparsity constrained sensing to denote a class of methods which are devoted to improving the efficiency and reducing the cost of sampling implementation itself. The "sparsity" here is referred to as sampling at a low temporal or spatial rate, which captures applications of cheaper hardware such as of lower power, less memory and throughput to implement sampling. We take frequency and direction of arrival (DoA) estimation as concrete examples and give the necessary and sufficient conditions of the sampling strategy. Interestingly, we prove that these problems can be reduced to some (multiple) remainder model, where it is equivalent to studying the residue representation of a signal. As a straightforward corollary, we supplement and complete the theory of co-prime sampling , which receives considerable attention over last decade. Our results also connect the two classic parameter estimation frameworks, the Chinese Remainder Theorem (CRT) method and the co-prime sensing, with a unified interpretation. On the other aspect, we advance the understanding of the robust remainder problem, which models the case when sampling with noise. A sharpened tradeoff between the parameter dynamic range and the error bound is derived. We prove that, for <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula>-frequency estimation in either complex or real waveforms, once the least common multiple (lcm) of the sampling rates selected is sufficiently large, a constant error tolerance bound independent of <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> is approached.
AbstractList In the first part of the series papers, we set out to answer the following fundamental question: for constrained sampling, what kind of signal can be uniquely represented or recovered by the (distributed) discrete sample sequence(s) obtained? We term this study as sparsity constrained sensing or sparse sensing . It is different from compressed sensing , which exploits the sparse representation of a signal to reduce sample complexity (compressed sampling or acquisition). We use sparsity constrained sensing to denote a class of methods which are devoted to improving the efficiency and reducing the cost of sampling implementation itself. The “sparsity” here is referred to as sampling at a low temporal or spatial rate, which captures applications of cheaper hardware such as of lower power, less memory and throughput to implement sampling. We take frequency and direction of arrival (DoA) estimation as concrete examples and give the necessary and sufficient conditions of the sampling strategy. Interestingly, we prove that these problems can be reduced to some (multiple) remainder model, where it is equivalent to studying the residue representation of a signal. As a straightforward corollary, we supplement and complete the theory of co-prime sampling , which receives considerable attention over last decade. Our results also connect the two classic parameter estimation frameworks, the Chinese Remainder Theorem (CRT) method and the co-prime sensing, with a unified interpretation. On the other aspect, we advance the understanding of the robust remainder problem, which models the case when sampling with noise. A sharpened tradeoff between the parameter dynamic range and the error bound is derived. We prove that, for [Formula Omitted]-frequency estimation in either complex or real waveforms, once the least common multiple (lcm) of the sampling rates selected is sufficiently large, a constant error tolerance bound independent of [Formula Omitted] is approached.
In the first part of the series papers, we set out to answer the following fundamental question: for constrained sampling, what kind of signal can be uniquely represented or recovered by the (distributed) discrete sample sequence(s) obtained? We term this study as sparsity constrained sensing or sparse sensing . It is different from compressed sensing , which exploits the sparse representation of a signal to reduce sample complexity (compressed sampling or acquisition). We use sparsity constrained sensing to denote a class of methods which are devoted to improving the efficiency and reducing the cost of sampling implementation itself. The "sparsity" here is referred to as sampling at a low temporal or spatial rate, which captures applications of cheaper hardware such as of lower power, less memory and throughput to implement sampling. We take frequency and direction of arrival (DoA) estimation as concrete examples and give the necessary and sufficient conditions of the sampling strategy. Interestingly, we prove that these problems can be reduced to some (multiple) remainder model, where it is equivalent to studying the residue representation of a signal. As a straightforward corollary, we supplement and complete the theory of co-prime sampling , which receives considerable attention over last decade. Our results also connect the two classic parameter estimation frameworks, the Chinese Remainder Theorem (CRT) method and the co-prime sensing, with a unified interpretation. On the other aspect, we advance the understanding of the robust remainder problem, which models the case when sampling with noise. A sharpened tradeoff between the parameter dynamic range and the error bound is derived. We prove that, for <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula>-frequency estimation in either complex or real waveforms, once the least common multiple (lcm) of the sampling rates selected is sufficiently large, a constant error tolerance bound independent of <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> is approached.
Author Zhang, Yaowen
Xiao, Hanshen
Zhou, Beining
Xiao, Guoqiang
Author_xml – sequence: 1
  givenname: Hanshen
  orcidid: 0000-0003-3380-4518
  surname: Xiao
  fullname: Xiao, Hanshen
  email: hsxiao@mit.edu
  organization: CSAIL and the EECS Department, MIT, Cambridge, MA, USA
– sequence: 2
  givenname: Yaowen
  surname: Zhang
  fullname: Zhang, Yaowen
  email: ywzhang@swu.edu.cn
  organization: College of Computer and Information Science, Southwest University, Chongqing, China
– sequence: 3
  givenname: Beining
  surname: Zhou
  fullname: Zhou, Beining
  email: cathyzbn@stanford.edu
  organization: Department of Computer Science, Stanford University, Stanford, CA, USA
– sequence: 4
  givenname: Guoqiang
  orcidid: 0000-0003-2165-476X
  surname: Xiao
  fullname: Xiao, Guoqiang
  email: gqxiao@swu.edu.cn
  organization: College of Computer and Information Science, Southwest University, Chongqing, China
BookMark eNp9kE1PAjEQhhuDiYDePXho4nlx-rHL1pshoiYkEODgbdPtzsISaLEtB_69i3AwHpzLTCbzzJs8PdKxziIh9wwGjIF6Wi5mAw5cDASXQybyK9JlSrIE5DDrtDOkIknz4ecN6YWwAWBSqqxLVlNL4xrp2B1spWPjLHU1Xey1D0080pGzIXrdWKzoAm1o7CqhM-0j_XimC73bb9sNXa7R-SPVtqJzVx5CpHPctVCFns68K7e4uyXXtd4GvLv0PlmOX5ej92QyffsYvUwSwxWPScm4qYwRJUBaKoMlKzFjpmY5N5lMS6Z4WqWYgciFlsZkWOdGqxQUGC4r0SeP57d7774OGGKxcQdv28SC55DxtoC1V3C-Mt6F4LEu9r7ZaX8sGBQnm0VrszjZLC42WyT7g5gm_vg66dn-Bz6cwQYRf-WAVGkuxDcZQ4Rc
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_JSEN_2025_3558578
crossref_primary_10_1109_TIM_2025_3551461
crossref_primary_10_1109_TIM_2024_3481553
crossref_primary_10_1109_TSP_2023_3248493
Cites_doi 10.1109/GlobalSIP.2016.7905832
10.1109/PROC.1984.12998
10.1109/TAES.2004.1292173
10.1109/TSP.2023.3248493
10.1109/TSP.2010.2066974
10.1109/LSP.2014.2322200
10.1002/9781119293132
10.1109/TIT.2005.862083
10.1002/mrm.21391
10.1109/TSP.2010.2089682
10.1109/TMI.2010.2085084
10.1109/MSP.2017.2774249
10.1117/1.3596602
10.1109/JAIEE.1928.6538024
10.1109/97.817380
10.1109/LSP.2006.884898
10.1109/TSP.2016.2641398
10.1109/MSP.2007.914728
10.1109/LSP.2015.2469537
10.1109/MSP.2007.914731
10.1109/TSP.2014.2339798
10.1109/TIT.2018.2857822
10.1016/j.sigpro.2020.107825
10.1109/TSP.2020.3023584
10.1109/TSP.2010.2049264
10.1109/TVT.2019.2905240
10.1109/TIT.2015.2485271
10.1109/78.806088
10.1007/BF02395039
10.1109/DSP-SPE.2011.5739227
10.1002/cpa.20124
10.1109/TGRS.2017.2720692
10.1109/TSP.2018.2846228
10.1109/TIT.2006.871582
10.1109/TIT.2016.2614322
10.1109/TIT.2005.858979
10.1109/TIT.2006.887088
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2023.3247138
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1276
ExternalDocumentID 10_1109_TSP_2023_3247138
10049583
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-b12cdcc3b005b9ceb1be61cf182c645b1925d5e60383a4cc6ef8ca95090c24d3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000979918600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:10:13 EDT 2025
Tue Nov 18 22:18:54 EST 2025
Sat Nov 29 04:10:57 EST 2025
Wed Aug 27 02:49:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-b12cdcc3b005b9ceb1be61cf182c645b1925d5e60383a4cc6ef8ca95090c24d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3380-4518
0000-0003-2165-476X
PQID 2806222201
PQPubID 85478
PageCount 14
ParticipantIDs crossref_primary_10_1109_TSP_2023_3247138
proquest_journals_2806222201
ieee_primary_10049583
crossref_citationtrail_10_1109_TSP_2023_3247138
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref30
  doi: 10.1109/GlobalSIP.2016.7905832
– ident: ref2
  doi: 10.1109/PROC.1984.12998
– ident: ref21
  doi: 10.1109/TAES.2004.1292173
– ident: ref34
  doi: 10.1109/TSP.2023.3248493
– ident: ref23
  doi: 10.1109/TSP.2010.2066974
– ident: ref29
  doi: 10.1109/LSP.2014.2322200
– ident: ref35
  doi: 10.1002/9781119293132
– ident: ref5
  doi: 10.1109/TIT.2005.862083
– ident: ref9
  doi: 10.1002/mrm.21391
– ident: ref19
  doi: 10.1109/TSP.2010.2089682
– ident: ref11
  doi: 10.1109/TMI.2010.2085084
– ident: ref15
  doi: 10.1109/MSP.2017.2774249
– ident: ref12
  doi: 10.1117/1.3596602
– ident: ref1
  doi: 10.1109/JAIEE.1928.6538024
– ident: ref17
  doi: 10.1109/97.817380
– ident: ref20
  doi: 10.1109/LSP.2006.884898
– ident: ref27
  doi: 10.1109/TSP.2016.2641398
– ident: ref10
  doi: 10.1109/MSP.2007.914728
– ident: ref28
  doi: 10.1109/LSP.2015.2469537
– ident: ref7
  doi: 10.1109/MSP.2007.914731
– ident: ref24
  doi: 10.1109/TSP.2014.2339798
– ident: ref14
  doi: 10.1109/TIT.2018.2857822
– ident: ref33
  doi: 10.1016/j.sigpro.2020.107825
– ident: ref25
  doi: 10.1109/TSP.2020.3023584
– ident: ref18
  doi: 10.1109/TSP.2010.2049264
– ident: ref32
  doi: 10.1109/TVT.2019.2905240
– ident: ref13
  doi: 10.1109/TIT.2015.2485271
– ident: ref16
  doi: 10.1109/78.806088
– ident: ref3
  doi: 10.1007/BF02395039
– ident: ref36
  doi: 10.1109/DSP-SPE.2011.5739227
– ident: ref6
  doi: 10.1002/cpa.20124
– ident: ref22
  doi: 10.1109/TGRS.2017.2720692
– ident: ref31
  doi: 10.1109/TSP.2018.2846228
– ident: ref4
  doi: 10.1109/TIT.2006.871582
– ident: ref37
  doi: 10.1109/TIT.2016.2614322
– ident: ref8
  doi: 10.1109/TIT.2005.858979
– ident: ref26
  doi: 10.1109/TIT.2006.887088
SSID ssj0014496
Score 2.457354
Snippet In the first part of the series papers, we set out to answer the following fundamental question: for constrained sampling, what kind of signal can be uniquely...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1263
SubjectTerms Cathode ray tubes
co-prime sampling/array
Complexity
Compressed sensing
CRT signal parameter estimation
Decoding
Direction of arrival
Estimation
Frequency estimation
Mathematical models
Noise measurement
Parameter estimation
Representations
Robustness
Sampling
Sensors
Sparsity
Sparsity constrained sensing
undersampling theory
Waveforms
Title On the Foundation of Sparsity Constrained Sensing- Part I: Sampling Theory and Robust Remainder Problem
URI https://ieeexplore.ieee.org/document/10049583
https://www.proquest.com/docview/2806222201
Volume 71
WOSCitedRecordID wos000979918600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagYoCBs4hyyQMLg9s0duKYDSEQLKWiHbpF9vNrhQRp1YPfj-2kpQiBxJbBtpJ8Pr7nd3yEXLUlt5InkikxTJnQEWfa0WymBU-lEZJzhCA2ITudbDBQ3SpZPeTCIGIIPsOmfwy-fDuGhb8qa_nqZirJ-CbZlDItk7VWLgMhghiX4wucJZkcLH2SkWr1e92mlwlvOvbgjLLs2xkURFV-7MTheHnY--eL7ZPdikfS2xL4A7KBxSHZWasueERGzwV19I5-KSfR8ZD2JjrEYVAv1RkEItDSng9jL0aMdt1Mok83tKd9pHkxomXuPtWFpS9js5jN6Qu-a19jcUq7pRhNnfQf7vt3j6zSVWAQq3jOTDsGC8D9CjQK3G5tMG3D0JkakIrEONKX2ATTyFmvWgCkOMxAK0ctIoiF5cekVowLPCHUorSANjFu2QtUoLk0xtk4UaQTYWJskNbyR-dQ1Rz3X_aWB9sjUrmDJvfQ5BU0DXK96jEp62380bbuoVhrV6LQIOdLMPNqRc5y70F2XMjxndNfup2RbT96eb9yTmrz6QIvyBZ8zF9n08sw2T4BbdXRiA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB71gdRyKAWKGlqoD71wcLJZ2-s1N4SoWtGmUZNDbit7PImQYFPlwe_H9m7aIgQStz3Y8u5-fnzjeXwA530tvBZKcyOnBZc2E9wGms2tFIV2UgtBmMQm9GBQTiZm2Carp1wYIkrBZ9SNj8mX7-e4jldlvVjdzKhSbMOukjLPmnStB6eBlEmOKzAGwVWpJxuvZGZ649GwG4XCu4E_BLOs_O0USrIqf-zF6YC5ePGfr3YIBy2TZJ8a6F_CFtWv4PmT-oKvYXZbs0Dw2KN2EptP2ejepkgMFsU6k0QEeTaKgez1jLNhmEvs6iMb2RhrXs9Yk73PbO3Z3dytlyt2Rz9srLK4YMNGjuYIxhdfxp8veauswDE3-Yq7fo4eUcQ16AyG_dpR0cdpMDawkMoF2qe8oiIL9quViAVNS7QmkIsMc-nFG9ip5zUdA_OkPZJXLix8SQat0M4FKyfLrJIupw70Nj-6wrbqePyy71WyPjJTBWiqCE3VQtOBDw897puKG_9oexSheNKuQaEDpxswq3ZNLqvoQw5sKDCet3_pdgZ7l-Ob6-r6avD1BPbjSM1tyynsrBZregfP8Ofq23LxPk28X3vH1M8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Foundation+of+Sparsity+Constrained+Sensing-+Part+I%3A+Sampling+Theory+and+Robust+Remainder+Problem&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Xiao%2C+Hanshen&rft.au=Zhang%2C+Yaowen&rft.au=Zhou%2C+Beining&rft.au=Xiao%2C+Guoqiang&rft.date=2023&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=71&rft.spage=1263&rft.epage=1276&rft_id=info:doi/10.1109%2FTSP.2023.3247138&rft.externalDocID=10049583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon