On the Foundation of Sparsity Constrained Sensing- Part I: Sampling Theory and Robust Remainder Problem
In the first part of the series papers, we set out to answer the following fundamental question: for constrained sampling, what kind of signal can be uniquely represented or recovered by the (distributed) discrete sample sequence(s) obtained? We term this study as sparsity constrained sensing or spa...
Saved in:
| Published in: | IEEE transactions on signal processing Vol. 71; pp. 1263 - 1276 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the first part of the series papers, we set out to answer the following fundamental question: for constrained sampling, what kind of signal can be uniquely represented or recovered by the (distributed) discrete sample sequence(s) obtained? We term this study as sparsity constrained sensing or sparse sensing . It is different from compressed sensing , which exploits the sparse representation of a signal to reduce sample complexity (compressed sampling or acquisition). We use sparsity constrained sensing to denote a class of methods which are devoted to improving the efficiency and reducing the cost of sampling implementation itself. The "sparsity" here is referred to as sampling at a low temporal or spatial rate, which captures applications of cheaper hardware such as of lower power, less memory and throughput to implement sampling. We take frequency and direction of arrival (DoA) estimation as concrete examples and give the necessary and sufficient conditions of the sampling strategy. Interestingly, we prove that these problems can be reduced to some (multiple) remainder model, where it is equivalent to studying the residue representation of a signal. As a straightforward corollary, we supplement and complete the theory of co-prime sampling , which receives considerable attention over last decade. Our results also connect the two classic parameter estimation frameworks, the Chinese Remainder Theorem (CRT) method and the co-prime sensing, with a unified interpretation. On the other aspect, we advance the understanding of the robust remainder problem, which models the case when sampling with noise. A sharpened tradeoff between the parameter dynamic range and the error bound is derived. We prove that, for <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula>-frequency estimation in either complex or real waveforms, once the least common multiple (lcm) of the sampling rates selected is sufficiently large, a constant error tolerance bound independent of <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> is approached. |
|---|---|
| AbstractList | In the first part of the series papers, we set out to answer the following fundamental question: for constrained sampling, what kind of signal can be uniquely represented or recovered by the (distributed) discrete sample sequence(s) obtained? We term this study as sparsity constrained sensing or sparse sensing . It is different from compressed sensing , which exploits the sparse representation of a signal to reduce sample complexity (compressed sampling or acquisition). We use sparsity constrained sensing to denote a class of methods which are devoted to improving the efficiency and reducing the cost of sampling implementation itself. The “sparsity” here is referred to as sampling at a low temporal or spatial rate, which captures applications of cheaper hardware such as of lower power, less memory and throughput to implement sampling. We take frequency and direction of arrival (DoA) estimation as concrete examples and give the necessary and sufficient conditions of the sampling strategy. Interestingly, we prove that these problems can be reduced to some (multiple) remainder model, where it is equivalent to studying the residue representation of a signal. As a straightforward corollary, we supplement and complete the theory of co-prime sampling , which receives considerable attention over last decade. Our results also connect the two classic parameter estimation frameworks, the Chinese Remainder Theorem (CRT) method and the co-prime sensing, with a unified interpretation. On the other aspect, we advance the understanding of the robust remainder problem, which models the case when sampling with noise. A sharpened tradeoff between the parameter dynamic range and the error bound is derived. We prove that, for [Formula Omitted]-frequency estimation in either complex or real waveforms, once the least common multiple (lcm) of the sampling rates selected is sufficiently large, a constant error tolerance bound independent of [Formula Omitted] is approached. In the first part of the series papers, we set out to answer the following fundamental question: for constrained sampling, what kind of signal can be uniquely represented or recovered by the (distributed) discrete sample sequence(s) obtained? We term this study as sparsity constrained sensing or sparse sensing . It is different from compressed sensing , which exploits the sparse representation of a signal to reduce sample complexity (compressed sampling or acquisition). We use sparsity constrained sensing to denote a class of methods which are devoted to improving the efficiency and reducing the cost of sampling implementation itself. The "sparsity" here is referred to as sampling at a low temporal or spatial rate, which captures applications of cheaper hardware such as of lower power, less memory and throughput to implement sampling. We take frequency and direction of arrival (DoA) estimation as concrete examples and give the necessary and sufficient conditions of the sampling strategy. Interestingly, we prove that these problems can be reduced to some (multiple) remainder model, where it is equivalent to studying the residue representation of a signal. As a straightforward corollary, we supplement and complete the theory of co-prime sampling , which receives considerable attention over last decade. Our results also connect the two classic parameter estimation frameworks, the Chinese Remainder Theorem (CRT) method and the co-prime sensing, with a unified interpretation. On the other aspect, we advance the understanding of the robust remainder problem, which models the case when sampling with noise. A sharpened tradeoff between the parameter dynamic range and the error bound is derived. We prove that, for <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula>-frequency estimation in either complex or real waveforms, once the least common multiple (lcm) of the sampling rates selected is sufficiently large, a constant error tolerance bound independent of <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> is approached. |
| Author | Zhang, Yaowen Xiao, Hanshen Zhou, Beining Xiao, Guoqiang |
| Author_xml | – sequence: 1 givenname: Hanshen orcidid: 0000-0003-3380-4518 surname: Xiao fullname: Xiao, Hanshen email: hsxiao@mit.edu organization: CSAIL and the EECS Department, MIT, Cambridge, MA, USA – sequence: 2 givenname: Yaowen surname: Zhang fullname: Zhang, Yaowen email: ywzhang@swu.edu.cn organization: College of Computer and Information Science, Southwest University, Chongqing, China – sequence: 3 givenname: Beining surname: Zhou fullname: Zhou, Beining email: cathyzbn@stanford.edu organization: Department of Computer Science, Stanford University, Stanford, CA, USA – sequence: 4 givenname: Guoqiang orcidid: 0000-0003-2165-476X surname: Xiao fullname: Xiao, Guoqiang email: gqxiao@swu.edu.cn organization: College of Computer and Information Science, Southwest University, Chongqing, China |
| BookMark | eNp9kE1PAjEQhhuDiYDePXho4nlx-rHL1pshoiYkEODgbdPtzsISaLEtB_69i3AwHpzLTCbzzJs8PdKxziIh9wwGjIF6Wi5mAw5cDASXQybyK9JlSrIE5DDrtDOkIknz4ecN6YWwAWBSqqxLVlNL4xrp2B1spWPjLHU1Xey1D0080pGzIXrdWKzoAm1o7CqhM-0j_XimC73bb9sNXa7R-SPVtqJzVx5CpHPctVCFns68K7e4uyXXtd4GvLv0PlmOX5ej92QyffsYvUwSwxWPScm4qYwRJUBaKoMlKzFjpmY5N5lMS6Z4WqWYgciFlsZkWOdGqxQUGC4r0SeP57d7774OGGKxcQdv28SC55DxtoC1V3C-Mt6F4LEu9r7ZaX8sGBQnm0VrszjZLC42WyT7g5gm_vg66dn-Bz6cwQYRf-WAVGkuxDcZQ4Rc |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_JSEN_2025_3558578 crossref_primary_10_1109_TIM_2025_3551461 crossref_primary_10_1109_TIM_2024_3481553 crossref_primary_10_1109_TSP_2023_3248493 |
| Cites_doi | 10.1109/GlobalSIP.2016.7905832 10.1109/PROC.1984.12998 10.1109/TAES.2004.1292173 10.1109/TSP.2023.3248493 10.1109/TSP.2010.2066974 10.1109/LSP.2014.2322200 10.1002/9781119293132 10.1109/TIT.2005.862083 10.1002/mrm.21391 10.1109/TSP.2010.2089682 10.1109/TMI.2010.2085084 10.1109/MSP.2017.2774249 10.1117/1.3596602 10.1109/JAIEE.1928.6538024 10.1109/97.817380 10.1109/LSP.2006.884898 10.1109/TSP.2016.2641398 10.1109/MSP.2007.914728 10.1109/LSP.2015.2469537 10.1109/MSP.2007.914731 10.1109/TSP.2014.2339798 10.1109/TIT.2018.2857822 10.1016/j.sigpro.2020.107825 10.1109/TSP.2020.3023584 10.1109/TSP.2010.2049264 10.1109/TVT.2019.2905240 10.1109/TIT.2015.2485271 10.1109/78.806088 10.1007/BF02395039 10.1109/DSP-SPE.2011.5739227 10.1002/cpa.20124 10.1109/TGRS.2017.2720692 10.1109/TSP.2018.2846228 10.1109/TIT.2006.871582 10.1109/TIT.2016.2614322 10.1109/TIT.2005.858979 10.1109/TIT.2006.887088 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2023.3247138 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 1276 |
| ExternalDocumentID | 10_1109_TSP_2023_3247138 10049583 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-b12cdcc3b005b9ceb1be61cf182c645b1925d5e60383a4cc6ef8ca95090c24d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000979918600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Mon Jun 30 10:10:13 EDT 2025 Tue Nov 18 22:18:54 EST 2025 Sat Nov 29 04:10:57 EST 2025 Wed Aug 27 02:49:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-b12cdcc3b005b9ceb1be61cf182c645b1925d5e60383a4cc6ef8ca95090c24d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3380-4518 0000-0003-2165-476X |
| PQID | 2806222201 |
| PQPubID | 85478 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TSP_2023_3247138 proquest_journals_2806222201 ieee_primary_10049583 crossref_citationtrail_10_1109_TSP_2023_3247138 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref30 doi: 10.1109/GlobalSIP.2016.7905832 – ident: ref2 doi: 10.1109/PROC.1984.12998 – ident: ref21 doi: 10.1109/TAES.2004.1292173 – ident: ref34 doi: 10.1109/TSP.2023.3248493 – ident: ref23 doi: 10.1109/TSP.2010.2066974 – ident: ref29 doi: 10.1109/LSP.2014.2322200 – ident: ref35 doi: 10.1002/9781119293132 – ident: ref5 doi: 10.1109/TIT.2005.862083 – ident: ref9 doi: 10.1002/mrm.21391 – ident: ref19 doi: 10.1109/TSP.2010.2089682 – ident: ref11 doi: 10.1109/TMI.2010.2085084 – ident: ref15 doi: 10.1109/MSP.2017.2774249 – ident: ref12 doi: 10.1117/1.3596602 – ident: ref1 doi: 10.1109/JAIEE.1928.6538024 – ident: ref17 doi: 10.1109/97.817380 – ident: ref20 doi: 10.1109/LSP.2006.884898 – ident: ref27 doi: 10.1109/TSP.2016.2641398 – ident: ref10 doi: 10.1109/MSP.2007.914728 – ident: ref28 doi: 10.1109/LSP.2015.2469537 – ident: ref7 doi: 10.1109/MSP.2007.914731 – ident: ref24 doi: 10.1109/TSP.2014.2339798 – ident: ref14 doi: 10.1109/TIT.2018.2857822 – ident: ref33 doi: 10.1016/j.sigpro.2020.107825 – ident: ref25 doi: 10.1109/TSP.2020.3023584 – ident: ref18 doi: 10.1109/TSP.2010.2049264 – ident: ref32 doi: 10.1109/TVT.2019.2905240 – ident: ref13 doi: 10.1109/TIT.2015.2485271 – ident: ref16 doi: 10.1109/78.806088 – ident: ref3 doi: 10.1007/BF02395039 – ident: ref36 doi: 10.1109/DSP-SPE.2011.5739227 – ident: ref6 doi: 10.1002/cpa.20124 – ident: ref22 doi: 10.1109/TGRS.2017.2720692 – ident: ref31 doi: 10.1109/TSP.2018.2846228 – ident: ref4 doi: 10.1109/TIT.2006.871582 – ident: ref37 doi: 10.1109/TIT.2016.2614322 – ident: ref8 doi: 10.1109/TIT.2005.858979 – ident: ref26 doi: 10.1109/TIT.2006.887088 |
| SSID | ssj0014496 |
| Score | 2.457354 |
| Snippet | In the first part of the series papers, we set out to answer the following fundamental question: for constrained sampling, what kind of signal can be uniquely... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1263 |
| SubjectTerms | Cathode ray tubes co-prime sampling/array Complexity Compressed sensing CRT signal parameter estimation Decoding Direction of arrival Estimation Frequency estimation Mathematical models Noise measurement Parameter estimation Representations Robustness Sampling Sensors Sparsity Sparsity constrained sensing undersampling theory Waveforms |
| Title | On the Foundation of Sparsity Constrained Sensing- Part I: Sampling Theory and Robust Remainder Problem |
| URI | https://ieeexplore.ieee.org/document/10049583 https://www.proquest.com/docview/2806222201 |
| Volume | 71 |
| WOSCitedRecordID | wos000979918600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagYoCBs4hyyQMLg9s0duKYDSEQLKWiHbpF9vNrhQRp1YPfj-2kpQiBxJbBtpJ8Pr7nd3yEXLUlt5InkikxTJnQEWfa0WymBU-lEZJzhCA2ITudbDBQ3SpZPeTCIGIIPsOmfwy-fDuGhb8qa_nqZirJ-CbZlDItk7VWLgMhghiX4wucJZkcLH2SkWr1e92mlwlvOvbgjLLs2xkURFV-7MTheHnY--eL7ZPdikfS2xL4A7KBxSHZWasueERGzwV19I5-KSfR8ZD2JjrEYVAv1RkEItDSng9jL0aMdt1Mok83tKd9pHkxomXuPtWFpS9js5jN6Qu-a19jcUq7pRhNnfQf7vt3j6zSVWAQq3jOTDsGC8D9CjQK3G5tMG3D0JkakIrEONKX2ATTyFmvWgCkOMxAK0ctIoiF5cekVowLPCHUorSANjFu2QtUoLk0xtk4UaQTYWJskNbyR-dQ1Rz3X_aWB9sjUrmDJvfQ5BU0DXK96jEp62380bbuoVhrV6LQIOdLMPNqRc5y70F2XMjxndNfup2RbT96eb9yTmrz6QIvyBZ8zF9n08sw2T4BbdXRiA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB71gdRyKAWKGlqoD71wcLJZ2-s1N4SoWtGmUZNDbit7PImQYFPlwe_H9m7aIgQStz3Y8u5-fnzjeXwA530tvBZKcyOnBZc2E9wGms2tFIV2UgtBmMQm9GBQTiZm2Carp1wYIkrBZ9SNj8mX7-e4jldlvVjdzKhSbMOukjLPmnStB6eBlEmOKzAGwVWpJxuvZGZ649GwG4XCu4E_BLOs_O0USrIqf-zF6YC5ePGfr3YIBy2TZJ8a6F_CFtWv4PmT-oKvYXZbs0Dw2KN2EptP2ejepkgMFsU6k0QEeTaKgez1jLNhmEvs6iMb2RhrXs9Yk73PbO3Z3dytlyt2Rz9srLK4YMNGjuYIxhdfxp8veauswDE3-Yq7fo4eUcQ16AyG_dpR0cdpMDawkMoF2qe8oiIL9quViAVNS7QmkIsMc-nFG9ip5zUdA_OkPZJXLix8SQat0M4FKyfLrJIupw70Nj-6wrbqePyy71WyPjJTBWiqCE3VQtOBDw897puKG_9oexSheNKuQaEDpxswq3ZNLqvoQw5sKDCet3_pdgZ7l-Ob6-r6avD1BPbjSM1tyynsrBZregfP8Ofq23LxPk28X3vH1M8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Foundation+of+Sparsity+Constrained+Sensing-+Part+I%3A+Sampling+Theory+and+Robust+Remainder+Problem&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Xiao%2C+Hanshen&rft.au=Zhang%2C+Yaowen&rft.au=Zhou%2C+Beining&rft.au=Xiao%2C+Guoqiang&rft.date=2023&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=71&rft.spage=1263&rft.epage=1276&rft_id=info:doi/10.1109%2FTSP.2023.3247138&rft.externalDocID=10049583 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |