Towards Domain Generalization in Crop and Weed Segmentation for Precision Farming Robots

Precision farming robots offer the potential to reduce the amount of used agrochemicals through targeted interventions and thus are a promising step towards sustainable agriculture. A prerequisite for such systems is a robust plant classification system that can identify crops and weeds in various a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 8; H. 6; S. 3310 - 3317
Hauptverfasser: Weyler, Jan, Labe, Thomas, Magistri, Federico, Behley, Jens, Stachniss, Cyrill
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Precision farming robots offer the potential to reduce the amount of used agrochemicals through targeted interventions and thus are a promising step towards sustainable agriculture. A prerequisite for such systems is a robust plant classification system that can identify crops and weeds in various agricultural fields. Most vision-based systems train convolutional neural networks (CNNs) on a given dataset, i.e., the source domain, to perform semantic segmentation of images. However, deploying these models on unseen fields, i.e., in the target domain, often shows a low generalization capability. Enhancing the generalization capability of CNNs is critical to increasing their performance on target domains with different operational conditions. In this letter, we present a domain generalized semantic segmentation approach for robust crop and weed detection by effectively extending and diversifying the source domain to achieve high performance across different agricultural field conditions. We propose to leverage unlabeled images captured from various agricultural fields during training in a two-step framework. First, we suggest a method to automatically compute sparse annotations and use them to present the model more plant varieties and growth stages to enhance its generalization capability. Among others, we exploit unlabeled images from fields containing crops sown in rows. Second, we propose a style transfer method that renders the source domain images in the style of images from various fields to achieve increased diversification. We conduct extensive experiments and show that we achieve superior performance in crop-weed segmentation across various fields compared to state-of-the-art methods.
AbstractList Precision farming robots offer the potential to reduce the amount of used agrochemicals through targeted interventions and thus are a promising step towards sustainable agriculture. A prerequisite for such systems is a robust plant classification system that can identify crops and weeds in various agricultural fields. Most vision-based systems train convolutional neural networks (CNNs) on a given dataset, i.e., the source domain, to perform semantic segmentation of images. However, deploying these models on unseen fields, i.e., in the target domain, often shows a low generalization capability. Enhancing the generalization capability of CNNs is critical to increasing their performance on target domains with different operational conditions. In this letter, we present a domain generalized semantic segmentation approach for robust crop and weed detection by effectively extending and diversifying the source domain to achieve high performance across different agricultural field conditions. We propose to leverage unlabeled images captured from various agricultural fields during training in a two-step framework. First, we suggest a method to automatically compute sparse annotations and use them to present the model more plant varieties and growth stages to enhance its generalization capability. Among others, we exploit unlabeled images from fields containing crops sown in rows. Second, we propose a style transfer method that renders the source domain images in the style of images from various fields to achieve increased diversification. We conduct extensive experiments and show that we achieve superior performance in crop-weed segmentation across various fields compared to state-of-the-art methods.
Author Behley, Jens
Labe, Thomas
Magistri, Federico
Stachniss, Cyrill
Weyler, Jan
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0002-8944-8949
  surname: Weyler
  fullname: Weyler, Jan
  email: jan.weyler@igg.uni-bonn.de
  organization: University of Bonn, Bonn, Germany
– sequence: 2
  givenname: Thomas
  orcidid: 0000-0003-4873-513X
  surname: Labe
  fullname: Labe, Thomas
  email: laebe@ipb.uni-bonn.de
  organization: University of Bonn, Bonn, Germany
– sequence: 3
  givenname: Federico
  orcidid: 0000-0003-2815-5760
  surname: Magistri
  fullname: Magistri, Federico
  email: federico.magistri@igg.uni-bonn.de
  organization: University of Bonn, Bonn, Germany
– sequence: 4
  givenname: Jens
  orcidid: 0000-0001-6483-0319
  surname: Behley
  fullname: Behley, Jens
  email: jens.behley@igg.uni-bonn.de
  organization: University of Bonn, Bonn, Germany
– sequence: 5
  givenname: Cyrill
  orcidid: 0000-0003-1173-6972
  surname: Stachniss
  fullname: Stachniss, Cyrill
  email: cyrill.stachniss@igg.uni-bonn.de
  organization: University of Bonn, Bonn, Germany
BookMark eNp9UM9LwzAYDTLBOXf34KHguTPJ1zbNcUw3hYEyJ3oLaZOOjDWZSYfoX29LdxgePL3vx3vf43uXaGCd1QhdEzwhBPO75Wo6oZjCBGhGE8LO0JACYzGwLBuc1BdoHMIWY0xSyoCnQ_Sxdl_SqxDdu1oaGy201V7uzI9sjLNRO5l5t4-kVdG71ip61Zta26bfVs5HL16XJnTdXPra2E20coVrwhU6r-Qu6PERR-ht_rCePcbL58XTbLqMS8ppE0tZScBFxXlWqTIlRBWgcpCpUnmSVhwTliZcJQV0AAmnCW-R56CSXCkGI3Tb391793nQoRFbd_C2tRQ0xxkljAO0LNyzSu9C8LoSe29q6b8FwaKLULQRii5CcYywlWR_JKXp_268NLv_hDe90GitT3xwDhRy-AXAIn9m
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_LRA_2023_3346760
crossref_primary_10_1109_LRA_2025_3559821
crossref_primary_10_3390_rs15235615
crossref_primary_10_3390_a18020084
crossref_primary_10_1080_10406026_2025_2545839
crossref_primary_10_1016_j_ecoinf_2024_102546
crossref_primary_10_1007_s11119_025_10227_3
crossref_primary_10_1016_j_compag_2025_110650
crossref_primary_10_1016_j_heliyon_2024_e36814
crossref_primary_10_1016_j_atech_2025_101147
crossref_primary_10_56294_dm2025194
crossref_primary_10_1016_j_compag_2024_109499
crossref_primary_10_32604_cmc_2024_049805
crossref_primary_10_3390_s23167153
Cites_doi 10.1109/LRA.2018.2849603
10.1109/WACV.2014.6835733
10.1016/j.compag.2007.05.008
10.1007/978-3-030-58545-7_19
10.1109/CVPR52688.2022.00970
10.1109/ICCV.2019.00455
10.1109/CVPR46437.2021.01141
10.5194/isprs-annals-IV-2-W3-41-2017
10.1016/j.inpa.2015.07.003
10.1109/WACV.2019.00196
10.1109/LRA.2017.2667039
10.1109/LRA.2018.2846289
10.1002/rob.21675
10.1109/TITS.2017.2750080
10.1002/rob.21901
10.1109/IROS45743.2020.9341277
10.1109/CVPR.2016.90
10.1109/IROS.2018.8593678
10.1016/c2019-1-04073-9
10.48550/arXiv.1802.02611
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2023.3262417
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 3317
ExternalDocumentID 10_1109_LRA_2023_3262417
10083238
Genre orig-research
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 10.13039/501100001659
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-aafa30bf996fdc511db3d83a5dd845f9017549d4b3549d3492499d3983d48dd73
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000979962100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Mon Jun 30 06:44:17 EDT 2025
Tue Nov 18 22:49:32 EST 2025
Sat Nov 29 06:03:23 EST 2025
Wed Aug 27 02:33:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-aafa30bf996fdc511db3d83a5dd845f9017549d4b3549d3492499d3983d48dd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4873-513X
0000-0003-2815-5760
0000-0001-6483-0319
0000-0002-8944-8949
0000-0003-1173-6972
PQID 2806217933
PQPubID 4437225
PageCount 8
ParticipantIDs ieee_primary_10083238
proquest_journals_2806217933
crossref_primary_10_1109_LRA_2023_3262417
crossref_citationtrail_10_1109_LRA_2023_3262417
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
Garcia-Garcia (ref24) 2017
Mter (ref3) 2013
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref6
ref5
Hendrycks (ref13) 2019
Kingma (ref23) 2015
References_xml – ident: ref17
  doi: 10.1109/LRA.2018.2849603
– ident: ref6
  doi: 10.1109/WACV.2014.6835733
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2019
  ident: ref13
  article-title: Augmix: A simple data processing method to improve robustness and uncertainty
– volume-title: Proc. Agricultural Eng. Conf.
  year: 2013
  ident: ref3
  article-title: Development of an intra-row weeding system using electric servo drives and machine vision for plant detection
– ident: ref5
  doi: 10.1016/j.compag.2007.05.008
– ident: ref11
  doi: 10.1007/978-3-030-58545-7_19
– ident: ref12
  doi: 10.1109/CVPR52688.2022.00970
– ident: ref19
  doi: 10.1109/ICCV.2019.00455
– ident: ref14
  doi: 10.1109/CVPR46437.2021.01141
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2015
  ident: ref23
  article-title: Adam: A method for stochastic optimization
– ident: ref9
  doi: 10.5194/isprs-annals-IV-2-W3-41-2017
– ident: ref16
  doi: 10.1016/j.inpa.2015.07.003
– ident: ref10
  doi: 10.1109/WACV.2019.00196
– ident: ref8
  doi: 10.1109/LRA.2017.2667039
– ident: ref18
  doi: 10.1109/LRA.2018.2846289
– ident: ref7
  doi: 10.1002/rob.21675
– ident: ref20
  doi: 10.1109/TITS.2017.2750080
– ident: ref2
  doi: 10.1002/rob.21901
– ident: ref4
  doi: 10.1109/IROS45743.2020.9341277
– year: 2017
  ident: ref24
  article-title: A review on deep learning techniques applied to semantic segmentation
– ident: ref22
  doi: 10.1109/CVPR.2016.90
– ident: ref1
  doi: 10.1109/IROS.2018.8593678
– ident: ref15
  doi: 10.1016/c2019-1-04073-9
– ident: ref21
  doi: 10.48550/arXiv.1802.02611
SSID ssj0001527395
Score 2.352595
Snippet Precision farming robots offer the potential to reduce the amount of used agrochemicals through targeted interventions and thus are a promising step towards...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3310
SubjectTerms Agrochemicals
Annotations
Artificial neural networks
Crop identification
Crops
deep learning for visual perception
Domains
Farming
Image enhancement
Image segmentation
Plants (botany)
Robotics and automation in agriculture and forestry
Robots
Robustness
semantic scene understanding
Semantic segmentation
Semantics
Soil
Training
Vegetation mapping
Vision systems
Title Towards Domain Generalization in Crop and Weed Segmentation for Precision Farming Robots
URI https://ieeexplore.ieee.org/document/10083238
https://www.proquest.com/docview/2806217933
Volume 8
WOSCitedRecordID wos000979962100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB3RigMcWIsolMoHLhzSJU7q5FiVVhxKVZWtt8jx2BUSJKgLR74d23FZhEDilEV2FM1LPItn3gCcIzKBkvteG33laQ2derytLzEQSviiHQobzLkfstEomk7jsStWt7UwUkqbfCYb5tTu5WMuViZU1jRENFTrmBKUGGNFsdZnQMVQicXheiuyFTeHk27DdAdvaBNFKyr2TfXYXio_FmCrVQa7_3yfPdhx5iPpFnjvw4bMDmD7C6ngIUxvbSbsglzmz9rtJ45Y2tVbEn2nN89fCM-QPGjVRW7k7NkVIGVEm7BkPHd9d8iAm0yZGZnkab5cVOBu0L_tXXmuf4In_NhfepwrTlup0i6NQqEtK0wpRpSHiFEQKm0JMO0dYpBSczA0hdr9QRpHFINIg0iPoJzlmTwGwqWPPKWMhowGLZVGGCnRUSFTDDsyDKvQXIs2EY5c3PS4eEqsk9GKEw1GYsBIHBhVuPiY8VIQa_wxtmKE_2VcIfcq1NbwJe7XWyRmq9g3yw49-WXaKWyZpxcJXzUoL-creQab4nX5uJjXoXT91q_bb-sdB1rNSQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBtYiy-sCFQ9o0jpvkiIAKRKkQFOgtcjx2hUSTqgvfj-24LEIgccoiW4nmJZ7FM28AThAjgZIHXgMD5WkNnXm8oS8xFEoEosGEDeY8taNOJ-71kjtXrG5rYaSUNvlM1syp3cvHQkxNqKxuiGio1jHzsMjCMGiU5VqfIRVDJpaw2Wakn9Tb92c10x-8po0Uraqib8rHdlP5sQRbvdJa_-cbbcCaMyDJWYn4JszJfAtWv9AKbkOva3Nhx-SiGGjHnzhqaVdxSfSd81ExJDxH8qyVF3mQ_YErQcqJNmLJ3ch13iEtbnJl-uS-yIrJuAKPrcvu-ZXnOih4IkiCice54tTPlHZqFAptW2FGMaacIcYhU9oWiLR_iGFGzcEQFWoHCGkSUwxjDSPdgYW8yOUuEC4D5BmNKIto6KssxliJpmKRirApGatCfSbaVDh6cdPl4jW1boafpBqM1ICROjCqcPoxY1hSa_wxtmKE_2VcKfcqHMzgS93PN07NZnFgFh6698u0Y1i-6t620_Z152YfVsyTyvSvA1iYjKbyEJbE2-RlPDqyX9g7Ab7PXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Domain+Generalization+in+Crop+and+Weed+Segmentation+for+Precision+Farming+Robots&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Weyler%2C+Jan&rft.au=L%C3%A4be%2C+Thomas&rft.au=Magistri%2C+Federico&rft.au=Behley%2C+Jens&rft.date=2023-06-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=8&rft.issue=6&rft.spage=3310&rft.epage=3317&rft_id=info:doi/10.1109%2FLRA.2023.3262417&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2023_3262417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon