Towards Domain Generalization in Crop and Weed Segmentation for Precision Farming Robots
Precision farming robots offer the potential to reduce the amount of used agrochemicals through targeted interventions and thus are a promising step towards sustainable agriculture. A prerequisite for such systems is a robust plant classification system that can identify crops and weeds in various a...
Saved in:
| Published in: | IEEE robotics and automation letters Vol. 8; no. 6; pp. 3310 - 3317 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Precision farming robots offer the potential to reduce the amount of used agrochemicals through targeted interventions and thus are a promising step towards sustainable agriculture. A prerequisite for such systems is a robust plant classification system that can identify crops and weeds in various agricultural fields. Most vision-based systems train convolutional neural networks (CNNs) on a given dataset, i.e., the source domain, to perform semantic segmentation of images. However, deploying these models on unseen fields, i.e., in the target domain, often shows a low generalization capability. Enhancing the generalization capability of CNNs is critical to increasing their performance on target domains with different operational conditions. In this letter, we present a domain generalized semantic segmentation approach for robust crop and weed detection by effectively extending and diversifying the source domain to achieve high performance across different agricultural field conditions. We propose to leverage unlabeled images captured from various agricultural fields during training in a two-step framework. First, we suggest a method to automatically compute sparse annotations and use them to present the model more plant varieties and growth stages to enhance its generalization capability. Among others, we exploit unlabeled images from fields containing crops sown in rows. Second, we propose a style transfer method that renders the source domain images in the style of images from various fields to achieve increased diversification. We conduct extensive experiments and show that we achieve superior performance in crop-weed segmentation across various fields compared to state-of-the-art methods. |
|---|---|
| AbstractList | Precision farming robots offer the potential to reduce the amount of used agrochemicals through targeted interventions and thus are a promising step towards sustainable agriculture. A prerequisite for such systems is a robust plant classification system that can identify crops and weeds in various agricultural fields. Most vision-based systems train convolutional neural networks (CNNs) on a given dataset, i.e., the source domain, to perform semantic segmentation of images. However, deploying these models on unseen fields, i.e., in the target domain, often shows a low generalization capability. Enhancing the generalization capability of CNNs is critical to increasing their performance on target domains with different operational conditions. In this letter, we present a domain generalized semantic segmentation approach for robust crop and weed detection by effectively extending and diversifying the source domain to achieve high performance across different agricultural field conditions. We propose to leverage unlabeled images captured from various agricultural fields during training in a two-step framework. First, we suggest a method to automatically compute sparse annotations and use them to present the model more plant varieties and growth stages to enhance its generalization capability. Among others, we exploit unlabeled images from fields containing crops sown in rows. Second, we propose a style transfer method that renders the source domain images in the style of images from various fields to achieve increased diversification. We conduct extensive experiments and show that we achieve superior performance in crop-weed segmentation across various fields compared to state-of-the-art methods. |
| Author | Behley, Jens Labe, Thomas Magistri, Federico Stachniss, Cyrill Weyler, Jan |
| Author_xml | – sequence: 1 givenname: Jan orcidid: 0000-0002-8944-8949 surname: Weyler fullname: Weyler, Jan email: jan.weyler@igg.uni-bonn.de organization: University of Bonn, Bonn, Germany – sequence: 2 givenname: Thomas orcidid: 0000-0003-4873-513X surname: Labe fullname: Labe, Thomas email: laebe@ipb.uni-bonn.de organization: University of Bonn, Bonn, Germany – sequence: 3 givenname: Federico orcidid: 0000-0003-2815-5760 surname: Magistri fullname: Magistri, Federico email: federico.magistri@igg.uni-bonn.de organization: University of Bonn, Bonn, Germany – sequence: 4 givenname: Jens orcidid: 0000-0001-6483-0319 surname: Behley fullname: Behley, Jens email: jens.behley@igg.uni-bonn.de organization: University of Bonn, Bonn, Germany – sequence: 5 givenname: Cyrill orcidid: 0000-0003-1173-6972 surname: Stachniss fullname: Stachniss, Cyrill email: cyrill.stachniss@igg.uni-bonn.de organization: University of Bonn, Bonn, Germany |
| BookMark | eNp9UM9LwzAYDTLBOXf34KHguTPJ1zbNcUw3hYEyJ3oLaZOOjDWZSYfoX29LdxgePL3vx3vf43uXaGCd1QhdEzwhBPO75Wo6oZjCBGhGE8LO0JACYzGwLBuc1BdoHMIWY0xSyoCnQ_Sxdl_SqxDdu1oaGy201V7uzI9sjLNRO5l5t4-kVdG71ip61Zta26bfVs5HL16XJnTdXPra2E20coVrwhU6r-Qu6PERR-ht_rCePcbL58XTbLqMS8ppE0tZScBFxXlWqTIlRBWgcpCpUnmSVhwTliZcJQV0AAmnCW-R56CSXCkGI3Tb391793nQoRFbd_C2tRQ0xxkljAO0LNyzSu9C8LoSe29q6b8FwaKLULQRii5CcYywlWR_JKXp_268NLv_hDe90GitT3xwDhRy-AXAIn9m |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1109_LRA_2023_3346760 crossref_primary_10_1109_LRA_2025_3559821 crossref_primary_10_3390_rs15235615 crossref_primary_10_3390_a18020084 crossref_primary_10_1080_10406026_2025_2545839 crossref_primary_10_1016_j_ecoinf_2024_102546 crossref_primary_10_1007_s11119_025_10227_3 crossref_primary_10_1016_j_compag_2025_110650 crossref_primary_10_1016_j_heliyon_2024_e36814 crossref_primary_10_1016_j_atech_2025_101147 crossref_primary_10_56294_dm2025194 crossref_primary_10_1016_j_compag_2024_109499 crossref_primary_10_32604_cmc_2024_049805 crossref_primary_10_3390_s23167153 |
| Cites_doi | 10.1109/LRA.2018.2849603 10.1109/WACV.2014.6835733 10.1016/j.compag.2007.05.008 10.1007/978-3-030-58545-7_19 10.1109/CVPR52688.2022.00970 10.1109/ICCV.2019.00455 10.1109/CVPR46437.2021.01141 10.5194/isprs-annals-IV-2-W3-41-2017 10.1016/j.inpa.2015.07.003 10.1109/WACV.2019.00196 10.1109/LRA.2017.2667039 10.1109/LRA.2018.2846289 10.1002/rob.21675 10.1109/TITS.2017.2750080 10.1002/rob.21901 10.1109/IROS45743.2020.9341277 10.1109/CVPR.2016.90 10.1109/IROS.2018.8593678 10.1016/c2019-1-04073-9 10.48550/arXiv.1802.02611 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2023.3262417 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 3317 |
| ExternalDocumentID | 10_1109_LRA_2023_3262417 10083238 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: 10.13039/501100001659 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-aafa30bf996fdc511db3d83a5dd845f9017549d4b3549d3492499d3983d48dd73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000979962100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Mon Jun 30 06:44:17 EDT 2025 Tue Nov 18 22:49:32 EST 2025 Sat Nov 29 06:03:23 EST 2025 Wed Aug 27 02:33:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-aafa30bf996fdc511db3d83a5dd845f9017549d4b3549d3492499d3983d48dd73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4873-513X 0000-0003-2815-5760 0000-0001-6483-0319 0000-0002-8944-8949 0000-0003-1173-6972 |
| PQID | 2806217933 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10083238 proquest_journals_2806217933 crossref_primary_10_1109_LRA_2023_3262417 crossref_citationtrail_10_1109_LRA_2023_3262417 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 Garcia-Garcia (ref24) 2017 Mter (ref3) 2013 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref6 ref5 Hendrycks (ref13) 2019 Kingma (ref23) 2015 |
| References_xml | – ident: ref17 doi: 10.1109/LRA.2018.2849603 – ident: ref6 doi: 10.1109/WACV.2014.6835733 – volume-title: Proc. Int. Conf. Learn. Representations year: 2019 ident: ref13 article-title: Augmix: A simple data processing method to improve robustness and uncertainty – volume-title: Proc. Agricultural Eng. Conf. year: 2013 ident: ref3 article-title: Development of an intra-row weeding system using electric servo drives and machine vision for plant detection – ident: ref5 doi: 10.1016/j.compag.2007.05.008 – ident: ref11 doi: 10.1007/978-3-030-58545-7_19 – ident: ref12 doi: 10.1109/CVPR52688.2022.00970 – ident: ref19 doi: 10.1109/ICCV.2019.00455 – ident: ref14 doi: 10.1109/CVPR46437.2021.01141 – volume-title: Proc. Int. Conf. Learn. Representations year: 2015 ident: ref23 article-title: Adam: A method for stochastic optimization – ident: ref9 doi: 10.5194/isprs-annals-IV-2-W3-41-2017 – ident: ref16 doi: 10.1016/j.inpa.2015.07.003 – ident: ref10 doi: 10.1109/WACV.2019.00196 – ident: ref8 doi: 10.1109/LRA.2017.2667039 – ident: ref18 doi: 10.1109/LRA.2018.2846289 – ident: ref7 doi: 10.1002/rob.21675 – ident: ref20 doi: 10.1109/TITS.2017.2750080 – ident: ref2 doi: 10.1002/rob.21901 – ident: ref4 doi: 10.1109/IROS45743.2020.9341277 – year: 2017 ident: ref24 article-title: A review on deep learning techniques applied to semantic segmentation – ident: ref22 doi: 10.1109/CVPR.2016.90 – ident: ref1 doi: 10.1109/IROS.2018.8593678 – ident: ref15 doi: 10.1016/c2019-1-04073-9 – ident: ref21 doi: 10.48550/arXiv.1802.02611 |
| SSID | ssj0001527395 |
| Score | 2.352595 |
| Snippet | Precision farming robots offer the potential to reduce the amount of used agrochemicals through targeted interventions and thus are a promising step towards... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3310 |
| SubjectTerms | Agrochemicals Annotations Artificial neural networks Crop identification Crops deep learning for visual perception Domains Farming Image enhancement Image segmentation Plants (botany) Robotics and automation in agriculture and forestry Robots Robustness semantic scene understanding Semantic segmentation Semantics Soil Training Vegetation mapping Vision systems |
| Title | Towards Domain Generalization in Crop and Weed Segmentation for Precision Farming Robots |
| URI | https://ieeexplore.ieee.org/document/10083238 https://www.proquest.com/docview/2806217933 |
| Volume | 8 |
| WOSCitedRecordID | wos000979962100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYxAEOPIcYjykHLhy6dU1HmuM0NnGAaRpD7Fa1STohsXZqN478dpw0gyEEEqdWlV1Vdhrbsf0Z4AptEHrBHmrA48LxPcUdLm_ajgwEd7nw3CBxzbAJNhwG0ykf2WZ10wujlDLFZ6qpb00uX2ZipY_KWhqIhqKNqUCFMVY2a30dqGgoMd5ZpyJd3rofd5t6OngTXRQ0VOyb6TGzVH5swMaqDPb_-T0HsGfdR9It9X0IWyo9gt0NUMFjmE5MJWxBbrM5hv3EAkvbfkuCT3p5tiBRKskzmi7yqGZz24CUEnRhySi3c3fIINKVMjMyzuJsWdTgadCf9O4cOz_BER73lk4UJRF14wRDmkQK9KxkTGVAo46Ugd9J0BNgGB1KP6b6omEKMfyRlAdU-oGUjJ5ANc1SdQqEBT6SJNJTMfN5hPyuEh2a8LgtE9HmdWitRRsKCy6uZ1y8hibIcHmIygi1MkKrjDpcf3IsSmCNP2hrWvgbdKXc63CxVl9of70i1KliT2879OwXtnPY0W8vC74uoLrMV-oStsXb8qXIG1B5eO83zNr6AE8zy5U |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIAEHnkMMBuTAhUO3Nmlpc5wG0xBjQjDEblWbpBMSa9E2-P04aQZDCCROrSpbrew0tmP7M8AZ2iD0gilqgHLh-FRxh8sLz5GR4C4X1I0y1wybCPv9aDjkd7ZZ3fTCKKVM8Zlq6FuTy5eFeNNHZU0NRMPQxizDSuD71Cvbtb6OVDSYGA_myUiXN3v3rYaeD95AJwVNVfjN-JhpKj-2YGNXOlv__KJt2LQOJGmVGt-BJZXvwsYCrOAeDAemFnZKLosxBv7EQkvbjkuCT9qT4pUkuSRPaLzIgxqNbQtSTtCJJXcTO3mHdBJdKzMi90VazKZVeOxcDdpdx05QcATldOYkSZYwN80wqMmkQN9KpkxGLAmkjPwgQ18gxPhQ-inTFw1UiAGQZDxi0o-kDNk-VPIiVwdAwshHkkxSlYY-T5DfVSJgGU89mQmP16A5F20sLLy4nnLxEpsww-UxKiPWyoitMmpw_snxWkJr_EFb1cJfoCvlXoP6XH2x_fmmsU4WU73xsMNf2E5hrTu47cW96_7NEazrN5XlX3WozCZv6hhWxfvseTo5MSvsAzvxzas |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Domain+Generalization+in+Crop+and+Weed+Segmentation+for+Precision+Farming+Robots&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Weyler%2C+Jan&rft.au=Labe%2C+Thomas&rft.au=Magistri%2C+Federico&rft.au=Behley%2C+Jens&rft.date=2023-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=8&rft.issue=6&rft.spage=3310&rft_id=info:doi/10.1109%2FLRA.2023.3262417&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |