GNN-Based Beamforming for Sum-Rate Maximization in MU-MISO Networks
The advantages of graph neural networks (GNNs) in leveraging the graph topology of wireless networks have drawn increasing attentions. This paper studies the GNN-based learning approach for the sum-rate maximization in multiple-user multiple-input single-output (MU-MISO) networks subject to the user...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on wireless communications Jg. 23; H. 8; S. 9251 - 9264 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1536-1276, 1558-2248 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!