GNN-Based Beamforming for Sum-Rate Maximization in MU-MISO Networks
The advantages of graph neural networks (GNNs) in leveraging the graph topology of wireless networks have drawn increasing attentions. This paper studies the GNN-based learning approach for the sum-rate maximization in multiple-user multiple-input single-output (MU-MISO) networks subject to the user...
Saved in:
| Published in: | IEEE transactions on wireless communications Vol. 23; no. 8; pp. 9251 - 9264 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1536-1276, 1558-2248 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The advantages of graph neural networks (GNNs) in leveraging the graph topology of wireless networks have drawn increasing attentions. This paper studies the GNN-based learning approach for the sum-rate maximization in multiple-user multiple-input single-output (MU-MISO) networks subject to the users' individual data rate requirements and the power budget of the base station (BS). By modeling the MU-MISO network as a graph, a GNN-based architecture named complex residual graph attention network (CRGAT) is proposed to directly map channel state information to beamforming vectors. The attention-enabled aggregation and the residual-assisted combination are adopted to enhance the learning capability and mitigate the oversmoothing issue. Furthermore, a novel activation function is proposed for the constraint due to the limited power budget at the BS. The CRGAT is trained via unsupervised learning with two proposed loss functions. An evaluation method is proposed for the learning-based approaches, based on which the effectiveness of the proposed CRGAT is validated in comparison with several convex optimization and learning based approaches. Numerical results are provided to reveal the advantages of the CRGAT including the millisecond-level response with limited optimality performance loss, the scalability to different number of users and power budgets, and the adaptability to different system settings. |
|---|---|
| AbstractList | The advantages of graph neural networks (GNNs) in leveraging the graph topology of wireless networks have drawn increasing attentions. This paper studies the GNN-based learning approach for the sum-rate maximization in multiple-user multiple-input single-output (MU-MISO) networks subject to the users' individual data rate requirements and the power budget of the base station (BS). By modeling the MU-MISO network as a graph, a GNN-based architecture named complex residual graph attention network (CRGAT) is proposed to directly map channel state information to beamforming vectors. The attention-enabled aggregation and the residual-assisted combination are adopted to enhance the learning capability and mitigate the oversmoothing issue. Furthermore, a novel activation function is proposed for the constraint due to the limited power budget at the BS. The CRGAT is trained via unsupervised learning with two proposed loss functions. An evaluation method is proposed for the learning-based approaches, based on which the effectiveness of the proposed CRGAT is validated in comparison with several convex optimization and learning based approaches. Numerical results are provided to reveal the advantages of the CRGAT including the millisecond-level response with limited optimality performance loss, the scalability to different number of users and power budgets, and the adaptability to different system settings. |
| Author | Dobre, Octavia A. Lu, Yang Li, Yuhang Ding, Zhiguo Ai, Bo Niyato, Dusit |
| Author_xml | – sequence: 1 givenname: Yuhang orcidid: 0009-0002-5834-6904 surname: Li fullname: Li, Yuhang email: 22125206@bjtu.edu.cn organization: School of Computer Science and Technology and the Collaborative Innovation Center of Railway Traffic Safety, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Yang orcidid: 0000-0002-3519-4488 surname: Lu fullname: Lu, Yang email: yanglu@bjtu.edu.cn organization: School of Computer Science and Technology and the Collaborative Innovation Center of Railway Traffic Safety, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Bo orcidid: 0000-0001-6850-0595 surname: Ai fullname: Ai, Bo email: boai@bjtu.edu.cn organization: State Key Laboratory of Rail Traffic Control and Safety and the School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, China – sequence: 4 givenname: Octavia A. orcidid: 0000-0001-8528-0512 surname: Dobre fullname: Dobre, Octavia A. email: odobre@mun.ca organization: Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada – sequence: 5 givenname: Zhiguo orcidid: 0000-0001-5280-384X surname: Ding fullname: Ding, Zhiguo email: zhiguo.ding@ieee.org organization: Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates – sequence: 6 givenname: Dusit orcidid: 0000-0002-7442-7416 surname: Niyato fullname: Niyato, Dusit email: dniyato@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Jurong West, Singapore |
| BookMark | eNp9kDtPwzAURi0EEm1hZ2CIxOzit-ORRlAq9SHRVoyWmzjIpYmLnYrHryelHRAD03eHe-6ne7rgtPa1BeAKoz7GSN0unrM-QYT1KRUYS3YCOpjzFBLC0tP9TAXERIpz0I1xjRCWgvMOyIbTKRyYaItkYE1V-lC5-iVpM5nvKvhkGptMzIer3JdpnK8TVyeTJZyM5rNkapt3H17jBTgrzSbay2P2wPLhfpE9wvFsOMruxjAnijTQqJIQzHNJ5EpRoQq-opirouCU8NQgjkVaypIiJjFHZEVzpQokDVc8p9gq2gM3h7vb4N92NjZ67Xehbis1RartYCxN2y102MqDjzHYUm-Dq0z41BjpvSrdqtJ7VfqoqkXEHyR3zc-7TTBu8x94fQCdtfZXD6MIpZx-Aww8dK4 |
| CODEN | ITWCAX |
| CitedBy_id | crossref_primary_10_1109_TCCN_2024_3508777 crossref_primary_10_1109_LWC_2025_3580144 crossref_primary_10_1109_TVT_2025_3553860 crossref_primary_10_1109_MWC_006_2400131 crossref_primary_10_1109_LWC_2024_3487550 crossref_primary_10_1109_TWC_2025_3530003 crossref_primary_10_1007_s11432_024_4261_1 crossref_primary_10_1109_TMC_2025_3563892 crossref_primary_10_1109_TCCN_2024_3494735 crossref_primary_10_1109_TMC_2025_3570648 crossref_primary_10_1109_TVT_2024_3442167 crossref_primary_10_1109_TVT_2024_3514860 crossref_primary_10_1109_TWC_2025_3543392 |
| Cites_doi | 10.1109/JSAC.2023.3240718 10.1109/LCOMM.2021.3049685 10.1109/TWC.2023.3253126 10.1109/TWC.2022.3219840 10.1109/TWC.2020.3033334 10.1609/aaai.v32i1.11604 10.1109/TWC.2022.3193138 10.1109/GLOBECOM46510.2021.9685457 10.1109/TCOMM.2022.3158646 10.1609/aaai.v34i01.5403 10.1109/MWC.012.2200552 10.24963/ijcai.2021/214 10.1109/LWC.2019.2943466 10.1109/LWC.2023.3270361 10.1109/TSP.2018.2866382 10.1109/TCOMM.2023.3251995 10.1109/ICCWorkshops50388.2021.9473497 10.1109/TCCN.2017.2758370 10.1109/TWC.2022.3166964 10.1145/3616901.3617022 10.1109/JSTSP.2023.3239189 10.1109/TCOMM.2020.3017757 10.1109/TWC.2020.3040983 10.1109/GCWkshps45667.2019.9024538 10.1109/ACCESS.2023.3275789 10.1609/aaai.v34i04.5747 10.1109/JSAC.2020.3036965 10.1109/TWC.2022.3215666 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2024.3361174 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 9264 |
| ExternalDocumentID | 10_1109_TWC_2024_3361174 10430085 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) through its Discovery Program funderid: 10.13039/501100000038 – fundername: China Postdoctoral Science Foundation grantid: BX2021031; 2021M690342 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China (NSFC) grantid: 62101025; 62221001 funderid: 10.13039/501100001809 – fundername: Beijing Nova Program grantid: Z211100002121139 funderid: 10.13039/501100005090 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-a9f2215c727b9369d5b3159dd53258a05168f7f30471502b3c99d07a595c31e93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329887800076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1276 |
| IngestDate | Fri Jul 25 12:16:09 EDT 2025 Sat Nov 29 06:23:59 EST 2025 Tue Nov 18 22:21:58 EST 2025 Wed Aug 27 02:32:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-a9f2215c727b9369d5b3159dd53258a05168f7f30471502b3c99d07a595c31e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0002-5834-6904 0000-0002-3519-4488 0000-0001-6850-0595 0000-0002-7442-7416 0000-0001-8528-0512 0000-0001-5280-384X |
| PQID | 3092924488 |
| PQPubID | 105736 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3092924488 crossref_primary_10_1109_TWC_2024_3361174 crossref_citationtrail_10_1109_TWC_2024_3361174 ieee_primary_10430085 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 Chen (ref24) ref2 ref1 ref17 ref16 ref19 ref18 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref1 doi: 10.1109/JSAC.2023.3240718 – ident: ref4 doi: 10.1109/LCOMM.2021.3049685 – ident: ref11 doi: 10.1109/TWC.2023.3253126 – ident: ref12 doi: 10.1109/TWC.2022.3219840 – ident: ref8 doi: 10.1109/TWC.2020.3033334 – ident: ref22 doi: 10.1609/aaai.v32i1.11604 – ident: ref16 doi: 10.1109/TWC.2022.3193138 – ident: ref18 doi: 10.1109/GLOBECOM46510.2021.9685457 – ident: ref20 doi: 10.1109/TCOMM.2022.3158646 – ident: ref26 doi: 10.1609/aaai.v34i01.5403 – start-page: 1 volume-title: Proc. WSA 25th Int. ITG Workshop Smart Antennas ident: ref24 article-title: Graph neural network based beamforming in D2D wireless networks – ident: ref5 doi: 10.1109/MWC.012.2200552 – ident: ref29 doi: 10.24963/ijcai.2021/214 – ident: ref9 doi: 10.1109/LWC.2019.2943466 – ident: ref15 doi: 10.1109/LWC.2023.3270361 – ident: ref7 doi: 10.1109/TSP.2018.2866382 – ident: ref17 doi: 10.1109/TCOMM.2023.3251995 – ident: ref25 doi: 10.1109/ICCWorkshops50388.2021.9473497 – ident: ref6 doi: 10.1109/TCCN.2017.2758370 – ident: ref21 doi: 10.1109/TWC.2022.3166964 – ident: ref28 doi: 10.1145/3616901.3617022 – ident: ref2 doi: 10.1109/JSTSP.2023.3239189 – ident: ref3 doi: 10.1109/TCOMM.2020.3017757 – ident: ref13 doi: 10.1109/TWC.2020.3040983 – ident: ref23 doi: 10.1109/GCWkshps45667.2019.9024538 – ident: ref10 doi: 10.1109/ACCESS.2023.3275789 – ident: ref27 doi: 10.1609/aaai.v34i04.5747 – ident: ref14 doi: 10.1109/JSAC.2020.3036965 – ident: ref19 doi: 10.1109/TWC.2022.3215666 |
| SSID | ssj0017655 |
| Score | 2.6134777 |
| Snippet | The advantages of graph neural networks (GNNs) in leveraging the graph topology of wireless networks have drawn increasing attentions. This paper studies the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9251 |
| SubjectTerms | Array signal processing Beamforming Budgets Convexity CRGAT GNNs Graph neural networks Interference Machine learning Maximization Message passing MISO communication MU-MISO Optimization Quality of service Signal processing algorithms State vectors sum-rate maximization Topology Unsupervised learning Wireless networks |
| Title | GNN-Based Beamforming for Sum-Rate Maximization in MU-MISO Networks |
| URI | https://ieeexplore.ieee.org/document/10430085 https://www.proquest.com/docview/3092924488 |
| Volume | 23 |
| WOSCitedRecordID | wos001329887800076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBN6JQkAcWBkNqx3E80orX0ICgFWyR44dUibaoD8TP5-ykVRECiSlRZEfR51zuu5zvPoTOlPO9brghibMUApTEEWBFBWEqja2TzAqpgtiEyLL09VU-VsXqoRbGWhs2n9kLfxpy-WakZ_5XGVh4zDxHWEWrQoiyWGuRMhBJkDgFC_bCMmKRk4zkZfelDZEgjS8YS5pNEX_zQUFU5ceXOLiXm61_Ptg22qx4JL4qF34HrdjhLtpY6i64h9q3WUZa4KUMblk18OwUrmM44ufZgDwBy8Qd9dkfVKWYuD_EnR7p3D8_4KzcHT7ZR72b6277jlSaCURTSadESUfBi2ugJYXX6jO8YMBYjOGM8lSBCSapE84n24AK0oJpKU0kFJdcs6aV7ADVhqOhPUSYS20odZGOqI5tIiBSc4wbk0KUKAvF6uhyjmKuq4biXtfiLQ-BRSRzwD33uOcV7nV0vpjxXjbT-GPsvsd5aVwJcR015iuVV-Y2yVkELA-ISpoe_TLtGK37u5db9xqoNh3P7Ala0x_T_mR8Gt6kL_BSwmM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwEB1BQYI9LAss2kIBH7hwcJvacRIfaUXpijaLtq3oLXL8IVWiLerHan8-YydbdbUCiVOiyFai50zmTcYzD-CTcr7XjTA0cZZhgJI4iqyopFxlsXWS21SqIDaR5nk2n8sfdbF6qIWx1obNZ7btT0Mu36z13v8qQwuPuecIj-GJiGPWrcq1DkmDNAkip2jDXlomPWQlI9mZ_uxjLMjiNudJt5vG97xQkFV58C0ODmbw4j8f7QxOayZJvlRL_xIe2dUrODnqL_ga-t_ynPbQTxnSs2rp-SleJ3gkk_2SXiPPJGN1u1jWxZhksSLjGR1fTq5IXu0P357DbPB12h_SWjWBaibZjirpGPpxjcSk9Gp9RpQcOYsxgjORKTTCJHOp8-k2JIOs5FpKE6VKSKF510r-Bhqr9cpeABFSG8ZcpCOmY5ukGKs5LozJME6UpeJN6NyhWOi6pbhXtvhVhNAikgXiXnjcixr3Jnw-zPhdtdP4x9hzj_PRuAriJrTuVqqoDW5b8Ah5HlKVLHv7l2kf4dlwOh4Vo8v8-zt47u9UbeRrQWO32dv38FTf7BbbzYfwVv0BPiPFqg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GNN-Based+Beamforming+for+Sum-Rate+Maximization+in+MU-MISO+Networks&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Li%2C+Yuhang&rft.au=Lu%2C+Yang&rft.au=Ai%2C+Bo&rft.au=Dobre%2C+Octavia+A&rft.date=2024-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=23&rft.issue=8&rft.spage=9251&rft_id=info:doi/10.1109%2FTWC.2024.3361174&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |