GNN-Based Beamforming for Sum-Rate Maximization in MU-MISO Networks

The advantages of graph neural networks (GNNs) in leveraging the graph topology of wireless networks have drawn increasing attentions. This paper studies the GNN-based learning approach for the sum-rate maximization in multiple-user multiple-input single-output (MU-MISO) networks subject to the user...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 23; no. 8; pp. 9251 - 9264
Main Authors: Li, Yuhang, Lu, Yang, Ai, Bo, Dobre, Octavia A., Ding, Zhiguo, Niyato, Dusit
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The advantages of graph neural networks (GNNs) in leveraging the graph topology of wireless networks have drawn increasing attentions. This paper studies the GNN-based learning approach for the sum-rate maximization in multiple-user multiple-input single-output (MU-MISO) networks subject to the users' individual data rate requirements and the power budget of the base station (BS). By modeling the MU-MISO network as a graph, a GNN-based architecture named complex residual graph attention network (CRGAT) is proposed to directly map channel state information to beamforming vectors. The attention-enabled aggregation and the residual-assisted combination are adopted to enhance the learning capability and mitigate the oversmoothing issue. Furthermore, a novel activation function is proposed for the constraint due to the limited power budget at the BS. The CRGAT is trained via unsupervised learning with two proposed loss functions. An evaluation method is proposed for the learning-based approaches, based on which the effectiveness of the proposed CRGAT is validated in comparison with several convex optimization and learning based approaches. Numerical results are provided to reveal the advantages of the CRGAT including the millisecond-level response with limited optimality performance loss, the scalability to different number of users and power budgets, and the adaptability to different system settings.
AbstractList The advantages of graph neural networks (GNNs) in leveraging the graph topology of wireless networks have drawn increasing attentions. This paper studies the GNN-based learning approach for the sum-rate maximization in multiple-user multiple-input single-output (MU-MISO) networks subject to the users' individual data rate requirements and the power budget of the base station (BS). By modeling the MU-MISO network as a graph, a GNN-based architecture named complex residual graph attention network (CRGAT) is proposed to directly map channel state information to beamforming vectors. The attention-enabled aggregation and the residual-assisted combination are adopted to enhance the learning capability and mitigate the oversmoothing issue. Furthermore, a novel activation function is proposed for the constraint due to the limited power budget at the BS. The CRGAT is trained via unsupervised learning with two proposed loss functions. An evaluation method is proposed for the learning-based approaches, based on which the effectiveness of the proposed CRGAT is validated in comparison with several convex optimization and learning based approaches. Numerical results are provided to reveal the advantages of the CRGAT including the millisecond-level response with limited optimality performance loss, the scalability to different number of users and power budgets, and the adaptability to different system settings.
Author Dobre, Octavia A.
Lu, Yang
Li, Yuhang
Ding, Zhiguo
Ai, Bo
Niyato, Dusit
Author_xml – sequence: 1
  givenname: Yuhang
  orcidid: 0009-0002-5834-6904
  surname: Li
  fullname: Li, Yuhang
  email: 22125206@bjtu.edu.cn
  organization: School of Computer Science and Technology and the Collaborative Innovation Center of Railway Traffic Safety, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0002-3519-4488
  surname: Lu
  fullname: Lu, Yang
  email: yanglu@bjtu.edu.cn
  organization: School of Computer Science and Technology and the Collaborative Innovation Center of Railway Traffic Safety, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Bo
  orcidid: 0000-0001-6850-0595
  surname: Ai
  fullname: Ai, Bo
  email: boai@bjtu.edu.cn
  organization: State Key Laboratory of Rail Traffic Control and Safety and the School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Octavia A.
  orcidid: 0000-0001-8528-0512
  surname: Dobre
  fullname: Dobre, Octavia A.
  email: odobre@mun.ca
  organization: Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
– sequence: 5
  givenname: Zhiguo
  orcidid: 0000-0001-5280-384X
  surname: Ding
  fullname: Ding, Zhiguo
  email: zhiguo.ding@ieee.org
  organization: Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
– sequence: 6
  givenname: Dusit
  orcidid: 0000-0002-7442-7416
  surname: Niyato
  fullname: Niyato, Dusit
  email: dniyato@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Jurong West, Singapore
BookMark eNp9kDtPwzAURi0EEm1hZ2CIxOzit-ORRlAq9SHRVoyWmzjIpYmLnYrHryelHRAD03eHe-6ne7rgtPa1BeAKoz7GSN0unrM-QYT1KRUYS3YCOpjzFBLC0tP9TAXERIpz0I1xjRCWgvMOyIbTKRyYaItkYE1V-lC5-iVpM5nvKvhkGptMzIer3JdpnK8TVyeTJZyM5rNkapt3H17jBTgrzSbay2P2wPLhfpE9wvFsOMruxjAnijTQqJIQzHNJ5EpRoQq-opirouCU8NQgjkVaypIiJjFHZEVzpQokDVc8p9gq2gM3h7vb4N92NjZ67Xehbis1RartYCxN2y102MqDjzHYUm-Dq0z41BjpvSrdqtJ7VfqoqkXEHyR3zc-7TTBu8x94fQCdtfZXD6MIpZx-Aww8dK4
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_TCCN_2024_3508777
crossref_primary_10_1109_LWC_2025_3580144
crossref_primary_10_1109_TVT_2025_3553860
crossref_primary_10_1109_MWC_006_2400131
crossref_primary_10_1109_LWC_2024_3487550
crossref_primary_10_1109_TWC_2025_3530003
crossref_primary_10_1007_s11432_024_4261_1
crossref_primary_10_1109_TMC_2025_3563892
crossref_primary_10_1109_TCCN_2024_3494735
crossref_primary_10_1109_TMC_2025_3570648
crossref_primary_10_1109_TVT_2024_3442167
crossref_primary_10_1109_TVT_2024_3514860
crossref_primary_10_1109_TWC_2025_3543392
Cites_doi 10.1109/JSAC.2023.3240718
10.1109/LCOMM.2021.3049685
10.1109/TWC.2023.3253126
10.1109/TWC.2022.3219840
10.1109/TWC.2020.3033334
10.1609/aaai.v32i1.11604
10.1109/TWC.2022.3193138
10.1109/GLOBECOM46510.2021.9685457
10.1109/TCOMM.2022.3158646
10.1609/aaai.v34i01.5403
10.1109/MWC.012.2200552
10.24963/ijcai.2021/214
10.1109/LWC.2019.2943466
10.1109/LWC.2023.3270361
10.1109/TSP.2018.2866382
10.1109/TCOMM.2023.3251995
10.1109/ICCWorkshops50388.2021.9473497
10.1109/TCCN.2017.2758370
10.1109/TWC.2022.3166964
10.1145/3616901.3617022
10.1109/JSTSP.2023.3239189
10.1109/TCOMM.2020.3017757
10.1109/TWC.2020.3040983
10.1109/GCWkshps45667.2019.9024538
10.1109/ACCESS.2023.3275789
10.1609/aaai.v34i04.5747
10.1109/JSAC.2020.3036965
10.1109/TWC.2022.3215666
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2024.3361174
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 9264
ExternalDocumentID 10_1109_TWC_2024_3361174
10430085
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) through its Discovery Program
  funderid: 10.13039/501100000038
– fundername: China Postdoctoral Science Foundation
  grantid: BX2021031; 2021M690342
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 62101025; 62221001
  funderid: 10.13039/501100001809
– fundername: Beijing Nova Program
  grantid: Z211100002121139
  funderid: 10.13039/501100005090
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-a9f2215c727b9369d5b3159dd53258a05168f7f30471502b3c99d07a595c31e93
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329887800076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 12:16:09 EDT 2025
Sat Nov 29 06:23:59 EST 2025
Tue Nov 18 22:21:58 EST 2025
Wed Aug 27 02:32:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-a9f2215c727b9369d5b3159dd53258a05168f7f30471502b3c99d07a595c31e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-5834-6904
0000-0002-3519-4488
0000-0001-6850-0595
0000-0002-7442-7416
0000-0001-8528-0512
0000-0001-5280-384X
PQID 3092924488
PQPubID 105736
PageCount 14
ParticipantIDs proquest_journals_3092924488
crossref_primary_10_1109_TWC_2024_3361174
crossref_citationtrail_10_1109_TWC_2024_3361174
ieee_primary_10430085
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
Chen (ref24)
ref2
ref1
ref17
ref16
ref19
ref18
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.1109/JSAC.2023.3240718
– ident: ref4
  doi: 10.1109/LCOMM.2021.3049685
– ident: ref11
  doi: 10.1109/TWC.2023.3253126
– ident: ref12
  doi: 10.1109/TWC.2022.3219840
– ident: ref8
  doi: 10.1109/TWC.2020.3033334
– ident: ref22
  doi: 10.1609/aaai.v32i1.11604
– ident: ref16
  doi: 10.1109/TWC.2022.3193138
– ident: ref18
  doi: 10.1109/GLOBECOM46510.2021.9685457
– ident: ref20
  doi: 10.1109/TCOMM.2022.3158646
– ident: ref26
  doi: 10.1609/aaai.v34i01.5403
– start-page: 1
  volume-title: Proc. WSA 25th Int. ITG Workshop Smart Antennas
  ident: ref24
  article-title: Graph neural network based beamforming in D2D wireless networks
– ident: ref5
  doi: 10.1109/MWC.012.2200552
– ident: ref29
  doi: 10.24963/ijcai.2021/214
– ident: ref9
  doi: 10.1109/LWC.2019.2943466
– ident: ref15
  doi: 10.1109/LWC.2023.3270361
– ident: ref7
  doi: 10.1109/TSP.2018.2866382
– ident: ref17
  doi: 10.1109/TCOMM.2023.3251995
– ident: ref25
  doi: 10.1109/ICCWorkshops50388.2021.9473497
– ident: ref6
  doi: 10.1109/TCCN.2017.2758370
– ident: ref21
  doi: 10.1109/TWC.2022.3166964
– ident: ref28
  doi: 10.1145/3616901.3617022
– ident: ref2
  doi: 10.1109/JSTSP.2023.3239189
– ident: ref3
  doi: 10.1109/TCOMM.2020.3017757
– ident: ref13
  doi: 10.1109/TWC.2020.3040983
– ident: ref23
  doi: 10.1109/GCWkshps45667.2019.9024538
– ident: ref10
  doi: 10.1109/ACCESS.2023.3275789
– ident: ref27
  doi: 10.1609/aaai.v34i04.5747
– ident: ref14
  doi: 10.1109/JSAC.2020.3036965
– ident: ref19
  doi: 10.1109/TWC.2022.3215666
SSID ssj0017655
Score 2.6134777
Snippet The advantages of graph neural networks (GNNs) in leveraging the graph topology of wireless networks have drawn increasing attentions. This paper studies the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9251
SubjectTerms Array signal processing
Beamforming
Budgets
Convexity
CRGAT
GNNs
Graph neural networks
Interference
Machine learning
Maximization
Message passing
MISO communication
MU-MISO
Optimization
Quality of service
Signal processing algorithms
State vectors
sum-rate maximization
Topology
Unsupervised learning
Wireless networks
Title GNN-Based Beamforming for Sum-Rate Maximization in MU-MISO Networks
URI https://ieeexplore.ieee.org/document/10430085
https://www.proquest.com/docview/3092924488
Volume 23
WOSCitedRecordID wos001329887800076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBN6JQkAcWBkNqx3E80orX0ICgFWyR44dUibaoD8TP5-ykVRECiSlRZEfR51zuu5zvPoTOlPO9brghibMUApTEEWBFBWEqja2TzAqpgtiEyLL09VU-VsXqoRbGWhs2n9kLfxpy-WakZ_5XGVh4zDxHWEWrQoiyWGuRMhBJkDgFC_bCMmKRk4zkZfelDZEgjS8YS5pNEX_zQUFU5ceXOLiXm61_Ptg22qx4JL4qF34HrdjhLtpY6i64h9q3WUZa4KUMblk18OwUrmM44ufZgDwBy8Qd9dkfVKWYuD_EnR7p3D8_4KzcHT7ZR72b6277jlSaCURTSadESUfBi2ugJYXX6jO8YMBYjOGM8lSBCSapE84n24AK0oJpKU0kFJdcs6aV7ADVhqOhPUSYS20odZGOqI5tIiBSc4wbk0KUKAvF6uhyjmKuq4biXtfiLQ-BRSRzwD33uOcV7nV0vpjxXjbT-GPsvsd5aVwJcR015iuVV-Y2yVkELA-ISpoe_TLtGK37u5db9xqoNh3P7Ala0x_T_mR8Gt6kL_BSwmM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwEB1BQYI9LAss2kIBH7hwcJvacRIfaUXpijaLtq3oLXL8IVWiLerHan8-YydbdbUCiVOiyFai50zmTcYzD-CTcr7XjTA0cZZhgJI4iqyopFxlsXWS21SqIDaR5nk2n8sfdbF6qIWx1obNZ7btT0Mu36z13v8qQwuPuecIj-GJiGPWrcq1DkmDNAkip2jDXlomPWQlI9mZ_uxjLMjiNudJt5vG97xQkFV58C0ODmbw4j8f7QxOayZJvlRL_xIe2dUrODnqL_ga-t_ynPbQTxnSs2rp-SleJ3gkk_2SXiPPJGN1u1jWxZhksSLjGR1fTq5IXu0P357DbPB12h_SWjWBaibZjirpGPpxjcSk9Gp9RpQcOYsxgjORKTTCJHOp8-k2JIOs5FpKE6VKSKF510r-Bhqr9cpeABFSG8ZcpCOmY5ukGKs5LozJME6UpeJN6NyhWOi6pbhXtvhVhNAikgXiXnjcixr3Jnw-zPhdtdP4x9hzj_PRuAriJrTuVqqoDW5b8Ah5HlKVLHv7l2kf4dlwOh4Vo8v8-zt47u9UbeRrQWO32dv38FTf7BbbzYfwVv0BPiPFqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GNN-Based+Beamforming+for+Sum-Rate+Maximization+in+MU-MISO+Networks&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Li%2C+Yuhang&rft.au=Lu%2C+Yang&rft.au=Ai%2C+Bo&rft.au=Dobre%2C+Octavia+A&rft.date=2024-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=23&rft.issue=8&rft.spage=9251&rft_id=info:doi/10.1109%2FTWC.2024.3361174&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon