Adaptive ECMS With Gear Shift Control by Grey Wolf Optimization Algorithm and Neural Network for Plug-In Hybrid Electric Buses
The plug-in hybrid electric bus (PHEB) is an important means of public transportation. For PHEB, this article proposes an energy management strategy that considers both gear shift control and power splitting. For gear shift control, a large number of gear-switching data under different working condi...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial electronics (1982) Ročník 71; číslo 1; s. 667 - 677 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0278-0046, 1557-9948 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The plug-in hybrid electric bus (PHEB) is an important means of public transportation. For PHEB, this article proposes an energy management strategy that considers both gear shift control and power splitting. For gear shift control, a large number of gear-switching data under different working conditions are calculated by using the dynamic programming algorithm. The neural network is trained by these data in the offline part so that it can provide the appropriate gear-switching signal in time in the online model. For power-split control, this article mainly selects an improved equivalent fuel consumption minimization strategy (ECMS) and uses the grey wolf optimization algorithm to iteratively solve the optimal equivalent factor. The proposed control strategy has not only been verified under various operating conditions but also verified by relevant experiments on the hardware-in-the-loop platform. The results show that the proposed strategy has better fuel economy than ECMS and the rule-based strategy under the provided mixed operating conditions. Compared with the dynamic programming algorithm, the fuel consumption is only increased by 3.23%, but the problem of the curse of dimensionality is avoided. |
|---|---|
| AbstractList | The plug-in hybrid electric bus (PHEB) is an important means of public transportation. For PHEB, this article proposes an energy management strategy that considers both gear shift control and power splitting. For gear shift control, a large number of gear-switching data under different working conditions are calculated by using the dynamic programming algorithm. The neural network is trained by these data in the offline part so that it can provide the appropriate gear-switching signal in time in the online model. For power-split control, this article mainly selects an improved equivalent fuel consumption minimization strategy (ECMS) and uses the grey wolf optimization algorithm to iteratively solve the optimal equivalent factor. The proposed control strategy has not only been verified under various operating conditions but also verified by relevant experiments on the hardware-in-the-loop platform. The results show that the proposed strategy has better fuel economy than ECMS and the rule-based strategy under the provided mixed operating conditions. Compared with the dynamic programming algorithm, the fuel consumption is only increased by 3.23%, but the problem of the curse of dimensionality is avoided. |
| Author | Xue, Mingzhou Tian, Xiang Jin, Zhijia Sun, Xiaodong |
| Author_xml | – sequence: 1 givenname: Xiaodong orcidid: 0000-0002-9451-3311 surname: Sun fullname: Sun, Xiaodong email: xdsun@ujs.edu.cn organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China – sequence: 2 givenname: Zhijia orcidid: 0000-0003-4550-9671 surname: Jin fullname: Jin, Zhijia email: 2111904009@stmail.ujs.edu.cn organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China – sequence: 3 givenname: Mingzhou surname: Xue fullname: Xue, Mingzhou email: 2212004037@stmail.ujs.edu.cn organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China – sequence: 4 givenname: Xiang orcidid: 0000-0001-5032-3885 surname: Tian fullname: Tian, Xiang email: 1000004966@ujs.edu.cn organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China |
| BookMark | eNp9kDtPG0EUhUcRSDGQPkWKK1Gvc-exr9JYjrFEAhJElKuZ2bswsN4xs7OJnCK_nTWmQBRUp7jnu0f6jthB5zti7CvHKedYfr9ZLaYChZxKoaRE9YlNeJrmSVmq4oBNUORFgqiyz-yo7x8QuUp5OmH_Z7XeRPeHYDH_eQ23Lt7DknSA63vXRJj7LgbfgtnCMtAWbn3bwOUIrN0_HZ3vYNbe-TBSa9BdDb9oCLodI_714REaH-CqHe6SVQfnWxNcDYuWbAzOwtnQU3_CDhvd9vTlNY_Z7x-Lm_l5cnG5XM1nF4kVpYhJaTArZKpJGJtnppRW19YaMlo1XBnLsSGJRhusyaTCEOU1CiNJkMyURXnMTvd_N8E_DdTH6sEPoRsnK1HInCue810L9y0bfN8HaqpNcGsdthXHame5Gi1XO8vVq-URyd4h1sUXMzFo134EftuDjoje7IynYqw8A1w7jRQ |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_1016_j_energy_2024_132014 crossref_primary_10_1109_TMECH_2024_3446598 crossref_primary_10_1016_j_energy_2025_135402 crossref_primary_10_1177_16878132241252334 crossref_primary_10_1016_j_est_2024_111928 crossref_primary_10_1007_s42835_025_02416_x crossref_primary_10_1109_TIE_2025_3549089 crossref_primary_10_3390_en16248094 crossref_primary_10_3390_technologies13030108 crossref_primary_10_3390_wevj14080212 crossref_primary_10_1109_TIE_2024_3370928 crossref_primary_10_1007_s00202_024_02898_4 crossref_primary_10_1109_TIE_2024_3511032 crossref_primary_10_1109_TTE_2024_3403678 crossref_primary_10_3390_en18133224 crossref_primary_10_1007_s00202_024_02727_8 crossref_primary_10_1109_TTE_2024_3476479 crossref_primary_10_1186_s42162_024_00442_z crossref_primary_10_1002_adc2_213 crossref_primary_10_1016_j_aei_2025_103183 crossref_primary_10_1109_TTE_2024_3371437 crossref_primary_10_1109_OJIES_2025_3559447 crossref_primary_10_1109_TTE_2024_3471083 crossref_primary_10_1109_TTE_2023_3334809 crossref_primary_10_1007_s00202_024_02746_5 crossref_primary_10_1007_s42835_023_01710_w crossref_primary_10_1109_ACCESS_2024_3409690 crossref_primary_10_1007_s12239_025_00347_0 crossref_primary_10_1109_ACCESS_2024_3402983 crossref_primary_10_1016_j_energy_2024_132722 crossref_primary_10_1007_s00202_023_02180_z crossref_primary_10_1007_s00202_024_02913_8 crossref_primary_10_1177_16878132241282013 crossref_primary_10_1016_j_rser_2025_115765 crossref_primary_10_1109_ACCESS_2025_3582527 crossref_primary_10_3390_electronics13224458 crossref_primary_10_1109_TPEL_2024_3363027 crossref_primary_10_1109_TIE_2023_3340212 crossref_primary_10_1007_s00202_024_02483_9 crossref_primary_10_1109_TIE_2024_3447757 crossref_primary_10_1016_j_energy_2025_138491 crossref_primary_10_1177_09544062231207186 crossref_primary_10_1016_j_energy_2024_134094 |
| Cites_doi | 10.1109/TVT.2014.2352357 10.1016/j.energy.2019.116151 10.1109/TEC.2021.3138905 10.1109/tie.2022.3210549 10.1109/TIE.2016.2547359 10.1109/TVT.2005.847445 10.1109/TIE.2011.2114312 10.1109/TVT.2019.2910728 10.1109/tte.2022.3212866 10.1109/TVT.2020.3040376 10.1109/TTE.2020.3043239 10.1016/S0967-0661(02)00072-2 10.1016/j.apenergy.2017.06.106 10.1109/TEC.2021.3109869 10.1109/TCST.2016.2517130 10.1109/TIE.2019.2946571 10.1109/TMECH.2021.3068973 10.1016/j.jpowsour.2016.11.106 10.1109/TIE.2021.3080220 10.1016/j.egypro.2016.11.087 10.1109/TPEL.2019.2923726 10.1016/j.apenergy.2015.06.009 10.1109/TMECH.2017.2707338 10.1016/j.apenergy.2021.116920 10.1016/j.apenergy.2016.02.026 10.1109/tte.2022.3195945 10.1109/TVT.2021.3081346 10.1109/TVT.2019.2960593 10.1109/TIE.2020.2965463 10.1016/j.energy.2019.03.083 10.1109/TVT.2017.2727069 10.1109/TVT.2020.2986541 10.1007/978-1-4471-6781-5 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2023.3243304 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 677 |
| ExternalDocumentID | 10_1109_TIE_2023_3243304 10043824 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Changzhou Science and Technology Support Program grantid: CE20220007 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c292t-9b06835ae2bc76b93cadccbeba4f14bc10fe30bab0deb52bee7d02b3e2e364c03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037241000062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 08:34:36 EDT 2025 Sat Nov 29 01:32:00 EST 2025 Tue Nov 18 21:18:39 EST 2025 Wed Aug 27 02:18:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-9b06835ae2bc76b93cadccbeba4f14bc10fe30bab0deb52bee7d02b3e2e364c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5032-3885 0000-0002-9451-3311 0000-0003-4550-9671 |
| PQID | 2837141710 |
| PQPubID | 85464 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2837141710 crossref_citationtrail_10_1109_TIE_2023_3243304 ieee_primary_10043824 crossref_primary_10_1109_TIE_2023_3243304 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jan. 2024-1-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref18 Onori (ref11) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Niels (ref19) 2003; 11 |
| References_xml | – ident: ref20 doi: 10.1109/TVT.2014.2352357 – ident: ref21 doi: 10.1016/j.energy.2019.116151 – ident: ref32 doi: 10.1109/TEC.2021.3138905 – ident: ref8 doi: 10.1109/tie.2022.3210549 – ident: ref26 doi: 10.1109/TIE.2016.2547359 – ident: ref5 doi: 10.1109/TVT.2005.847445 – ident: ref1 doi: 10.1109/TIE.2011.2114312 – ident: ref23 doi: 10.1109/TVT.2019.2910728 – ident: ref15 doi: 10.1109/tte.2022.3212866 – ident: ref14 doi: 10.1109/TVT.2020.3040376 – ident: ref28 doi: 10.1109/TTE.2020.3043239 – volume: 11 start-page: 171 year: 2003 ident: ref19 article-title: Energy management strategies for parallel hybrid vehicles using fuzzy logic publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(02)00072-2 – ident: ref30 doi: 10.1016/j.apenergy.2017.06.106 – ident: ref4 doi: 10.1109/TEC.2021.3109869 – ident: ref24 doi: 10.1109/TCST.2016.2517130 – ident: ref6 doi: 10.1109/TIE.2019.2946571 – ident: ref2 doi: 10.1109/TMECH.2021.3068973 – ident: ref16 doi: 10.1016/j.jpowsour.2016.11.106 – ident: ref29 doi: 10.1109/TIE.2021.3080220 – ident: ref12 doi: 10.1016/j.egypro.2016.11.087 – ident: ref33 doi: 10.1109/TPEL.2019.2923726 – ident: ref7 doi: 10.1016/j.apenergy.2015.06.009 – ident: ref27 doi: 10.1109/TMECH.2017.2707338 – ident: ref13 doi: 10.1016/j.apenergy.2021.116920 – ident: ref25 doi: 10.1016/j.apenergy.2016.02.026 – ident: ref9 doi: 10.1109/tte.2022.3195945 – ident: ref17 doi: 10.1109/TVT.2021.3081346 – ident: ref10 doi: 10.1109/TVT.2019.2960593 – ident: ref31 doi: 10.1109/TIE.2020.2965463 – ident: ref18 doi: 10.1016/j.energy.2019.03.083 – ident: ref3 doi: 10.1109/TVT.2017.2727069 – ident: ref22 doi: 10.1109/TVT.2020.2986541 – volume-title: Hybrid Electric Vehicles Energy Management Strategies year: 2016 ident: ref11 doi: 10.1007/978-1-4471-6781-5 |
| SSID | ssj0014515 |
| Score | 2.6062973 |
| Snippet | The plug-in hybrid electric bus (PHEB) is an important means of public transportation. For PHEB, this article proposes an energy management strategy that... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 667 |
| SubjectTerms | Adaptive control Algorithms Batteries Driving cycle division Dynamic programming Energy consumption Energy management Engines Equivalence Fuel consumption Fuel economy gear shift control Gears grey wolf optimizer algorithm Hybrid electric vehicles neural network Neural networks Optimization Optimization algorithms plug-in hybrid electric bus (PHEB) power split control Public transportation Switching Torque |
| Title | Adaptive ECMS With Gear Shift Control by Grey Wolf Optimization Algorithm and Neural Network for Plug-In Hybrid Electric Buses |
| URI | https://ieeexplore.ieee.org/document/10043824 https://www.proquest.com/docview/2837141710 |
| Volume | 71 |
| WOSCitedRecordID | wos001037241000062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T-NAFB4BooCCYxdEFha9gmYLJ_Z4bI_LbBQOCQISsNBZczxDpOCgxFmJht_OHA4CIZDoXMyzLX1zfG_e8RFywCPkSYYi0CiygBlOHYgyVYGhRtrwA47orgb-nWaDAb-9zS-aYnVXC4OILvkM2_bRxfL1WM3sVVkn8nErtkgWsyz1xVqvIQOWeLkCalvGGq9vHpMM887VSb9tZcLbhj1Y__3dGeREVT7sxO54OVz_5o9tkLWGR0LXA79JFrD6QVbfdBf8SZ67Wjza3Qz6vbNLuBnW93BkJjZc3g_LGno-SR3kExwZPOFmPCrh3Bg8NKWZ0B3djSfG6gFEpcG28TBfHPi8cTBkFy5Gs7vgpILjJ1v3BX0nqTNU8Hc2xekWuT7sX_WOg0ZuIVA0p3WQyzA1fEwglSpLZR4roZWSKAUrIyZVFJYYh1LIUKNMqETMdEhljBTjlKkw3iZL1bjCHQIsiTWXXESJSJnkKUfD68pY0pJrhlS1SGcOQKGaXuRWEmNUOJ8kzAsDWWEhKxrIWuTPq8Wj78PxxdgtC9GbcR6dFtmbg1w0K3Va2O4_EYsM0fr1idkuWTFvZ_7eZY8s1ZMZ_ibL6n89nE723SR8AXF82ow |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BQYIeeLYiUGAOXDg4sddre30MUdpEpKFSA-3N2se4jZQ6VeJU6oXfzu7aqYoQSNx82NFa-vbxzczOfACfREQiyUgGhmQWcMupA1mmOrDUyFh-IIh8aODHJJtOxfl5ftIWq_taGCLyj8-o6z59Lt8s9caFynpRk7fiD-GRk85qy7XukgY8aQQLmGsaa_2-bVYyzHuz8bDrhMK7lj84D_63W8jLqvxxFvsL5vD5f_7aC3jWMknsN9C_hAdUvYLde_0FX8PPvpHX7jzD4eD4FM_m9SUe2aWNp5fzssZB80wd1S0eWUTxbLko8Zs1uGqLM7G_uFiurNUVysqga-RhZ5w2L8fR0l08WWwugnGFo1tX-YVDL6oz1_hls6b1Hnw_HM4Go6AVXAg0y1kd5CpMLSOTxJTOUpXHWhqtFSnJy4grHYUlxaGSKjSkEqaIMhMyFROjOOU6jPdhp1pW9AaQJ7ERSsgokSlXIhVkmV0ZK1YKw4npDvS2ABS67UbuRDEWhfdKwrywkBUOsqKFrAOf7yyum04c_xi75yC6N65BpwMHW5CLdq-uC9f_J-KRpVpv_2L2EZ6MZseTYjKefn0HT-1MvInCHMBOvdrQe3isb-r5evXBL8hf-2Xd1Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+ECMS+With+Gear+Shift+Control+by+Grey+Wolf+Optimization+Algorithm+and+Neural+Network+for+Plug-In+Hybrid+Electric+Buses&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Sun%2C+Xiaodong&rft.au=Jin%2C+Zhijia&rft.au=Xue%2C+Mingzhou&rft.au=Tian%2C+Xiang&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=71&rft.issue=1&rft.spage=667&rft.epage=677&rft_id=info:doi/10.1109%2FTIE.2023.3243304&rft.externalDocID=10043824 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |