2D Normalized Iterative Hard Thresholding Algorithm for Fast Compressive Radar Imaging
Compressive radar imaging has attracted considerable attention because it substantially reduces imaging time through directly compressive sampling. However, a problem that must be addressed for compressive radar imaging systems is the high computational complexity of reconstruction of sparse signals...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 9; no. 6; p. 619 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.06.2017
|
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Compressive radar imaging has attracted considerable attention because it substantially reduces imaging time through directly compressive sampling. However, a problem that must be addressed for compressive radar imaging systems is the high computational complexity of reconstruction of sparse signals. In this paper, a novel algorithm, called two-dimensional (2D) normalized iterative hard thresholding (NIHT) or 2D-NIHT algorithm, is proposed to directly reconstruct radar images in the matrix domain. The reconstruction performance of 2D-NIHT algorithm was validated by an experiment on recovering a synthetic 2D sparse signal, and the superiority of the 2D-NIHT algorithm to the NIHT algorithm was demonstrated by a comprehensive comparison of its reconstruction performance. Moreover, to be used in compressive radar imaging systems, a 2D sampling model was also proposed to compress the range and azimuth data simultaneously. The practical application of the 2D-NIHT algorithm in radar systems was validated by recovering two radar scenes with noise at different signal-to-noise ratios, and the results showed that the 2D-NIHT algorithm could reconstruct radar scenes with a high probability of exact recovery in the matrix domain. In addition, the reconstruction performance of the 2D-NIHT algorithm was compared with four existing efficient reconstruction algorithms using the two radar scenes, and the results illustrated that, compared to the other algorithms, the 2D-NIHT algorithm could dramatically reduce the computational complexity in signal reconstruction and successfully reconstruct 2D sparse images with a high probability of exact recovery. |
|---|---|
| AbstractList | Compressive radar imaging has attracted considerable attention because it substantially reduces imaging time through directly compressive sampling. However, a problem that must be addressed for compressive radar imaging systems is the high computational complexity of reconstruction of sparse signals. In this paper, a novel algorithm, called two-dimensional (2D) normalized iterative hard thresholding (NIHT) or 2D-NIHT algorithm, is proposed to directly reconstruct radar images in the matrix domain. The reconstruction performance of 2D-NIHT algorithm was validated by an experiment on recovering a synthetic 2D sparse signal, and the superiority of the 2D-NIHT algorithm to the NIHT algorithm was demonstrated by a comprehensive comparison of its reconstruction performance. Moreover, to be used in compressive radar imaging systems, a 2D sampling model was also proposed to compress the range and azimuth data simultaneously. The practical application of the 2D-NIHT algorithm in radar systems was validated by recovering two radar scenes with noise at different signal-to-noise ratios, and the results showed that the 2D-NIHT algorithm could reconstruct radar scenes with a high probability of exact recovery in the matrix domain. In addition, the reconstruction performance of the 2D-NIHT algorithm was compared with four existing efficient reconstruction algorithms using the two radar scenes, and the results illustrated that, compared to the other algorithms, the 2D-NIHT algorithm could dramatically reduce the computational complexity in signal reconstruction and successfully reconstruct 2D sparse images with a high probability of exact recovery. |
| Author | Yang, Wenguang Liu, Lianqing Li, Gongxin Yang, Jia Wang, Yuechao Wang, Wenxue |
| Author_xml | – sequence: 1 givenname: Gongxin orcidid: 0000-0003-2263-0225 surname: Li fullname: Li, Gongxin – sequence: 2 givenname: Jia surname: Yang fullname: Yang, Jia – sequence: 3 givenname: Wenguang orcidid: 0000-0002-1560-665X surname: Yang fullname: Yang, Wenguang – sequence: 4 givenname: Yuechao surname: Wang fullname: Wang, Yuechao – sequence: 5 givenname: Wenxue surname: Wang fullname: Wang, Wenxue – sequence: 6 givenname: Lianqing surname: Liu fullname: Liu, Lianqing |
| BookMark | eNptkEtLAzEQgINUsNYe_AcBTx7Wzib7yrFUawtFQarXZbpJ2y27mzqJgv56Uyoi4lxmDt83r3PW62xnGLuM4UZKBSNyCjLIYnXC-gJyESVCid6v-owNndtBCCljBUmfvYhb_mCpxab-NJrPvSH09bvhMyTNl1sybmsbXXcbPm42lmq_bfnaEp-i83xi230g3EF4Qo3E5y1uAnzBTtfYODP8zgP2PL1bTmbR4vF-Phkvoips4yOFcSoMVBJTSKXWGa4KlYEpcqmzItNVnmFSFbDSJs-DYZJUgwKBAEqiMnLAro5992Rf34zz5c6-URdGliJWaZJAEstAjY5URdY5Muuyqn0403aesG7KGMrD_8qf_wXj-o-xp7pF-viH_QIRl3Dr |
| CitedBy_id | crossref_primary_10_1002_adbi_201800319 crossref_primary_10_3390_math13010037 crossref_primary_10_3390_rs9121284 crossref_primary_10_1039_C9NR01688K crossref_primary_10_1016_j_micron_2018_07_007 |
| Cites_doi | 10.1016/j.sigpro.2014.03.039 10.1016/j.sigpro.2011.01.002 10.1109/JSTSP.2010.2042411 10.1007/s11277-015-2911-3 10.1007/s10994-005-3561-6 10.1109/MSP.2007.4286571 10.1117/12.777175 10.1109/TNANO.2015.2449871 10.1109/TSP.2009.2014277 10.1016/j.acha.2009.04.002 10.1016/j.ins.2014.02.089 10.1016/j.acha.2008.07.002 10.1016/j.sigpro.2009.11.009 10.1109/TGRS.2010.2048575 10.1109/APSAR.2009.5374118 10.1109/LGRS.2009.2021584 10.1109/ICASSP.2009.4960294 10.1109/TGRS.2010.2051231 10.1109/SSP.2007.4301298 10.1016/j.proeng.2012.01.289 10.1109/RADAR.2008.4720896 10.1109/TSP.2008.2007606 10.1109/RADAR.2007.374203 10.1109/DCC.2010.90 10.1007/s11704-015-3326-8 10.1109/JPROC.2009.2037526 10.1007/s11432-012-4551-5 10.1016/j.crma.2008.03.014 |
| ContentType | Journal Article |
| Copyright | 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.3390/rs9060619 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | 10_3390_rs9060619 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c292t-9a152e0c3a5053dd6ab8960e873d686dc76a4c80bde77292e45d0902a0093a9e3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404623900110&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Jul 25 11:59:59 EDT 2025 Tue Nov 18 21:39:48 EST 2025 Sat Nov 29 07:09:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-9a152e0c3a5053dd6ab8960e873d686dc76a4c80bde77292e45d0902a0093a9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2263-0225 0000-0002-1560-665X |
| OpenAccessLink | https://www.proquest.com/docview/2195440413?pq-origsite=%requestingapplication% |
| PQID | 2195440413 |
| PQPubID | 2032338 |
| ParticipantIDs | proquest_journals_2195440413 crossref_citationtrail_10_3390_rs9060619 crossref_primary_10_3390_rs9060619 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-01 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2017 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Blumensath (ref_24) 2009; 27 Mohimani (ref_25) 2009; 57 Needell (ref_23) 2009; 26 Eftekhari (ref_16) 2011; 91 ref_14 ref_13 Chen (ref_18) 2014; 104 Li (ref_29) 2015; 14 ref_12 ref_11 Zhang (ref_10) 2010; 48 ref_31 Li (ref_30) 2014; 8 Alonso (ref_28) 2010; 48 Wen (ref_8) 2015; 85 Ye (ref_15) 2005; 61 Zhang (ref_4) 2009; 6 Candes (ref_27) 2008; 346 Ender (ref_9) 2010; 90 Huang (ref_19) 2014; 271 Blumensath (ref_22) 2010; 4 Herman (ref_1) 2009; 57 Baraniuk (ref_2) 2007; 24 Potter (ref_7) 2010; 98 ref_20 Li (ref_26) 2015; 9 ref_3 Fang (ref_17) 2012; 55 Liu (ref_21) 2012; 29 ref_5 ref_6 |
| References_xml | – volume: 104 start-page: 15 year: 2014 ident: ref_18 article-title: Iterative gradient projection algorithm for two–Dimensional compressive sensing sparse image reconstruction publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.03.039 – ident: ref_11 – volume: 91 start-page: 1589 year: 2011 ident: ref_16 article-title: Two–Dimensional random projection publication-title: Signal Process. doi: 10.1016/j.sigpro.2011.01.002 – volume: 4 start-page: 298 year: 2010 ident: ref_22 article-title: Normalized iterative hard thresholding: Guaranteed stability and performance publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2010.2042411 – volume: 85 start-page: 2393 year: 2015 ident: ref_8 article-title: Multi-way compressive sensing based 2D DOA estimation algorithm for monostatic mimo radar with arbitrary arrays publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-015-2911-3 – volume: 61 start-page: 167 year: 2005 ident: ref_15 article-title: Generalized low rank approximations of matrices publication-title: Mach. Learn. doi: 10.1007/s10994-005-3561-6 – volume: 24 start-page: 118 year: 2007 ident: ref_2 article-title: Compressive sensing publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2007.4286571 – ident: ref_5 doi: 10.1117/12.777175 – volume: 14 start-page: 837 year: 2015 ident: ref_29 article-title: Nano–Manipulation based on real–Time compressive tracking publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2015.2449871 – volume: 57 start-page: 2275 year: 2009 ident: ref_1 article-title: High-resolution radar via compressed sensing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2014277 – volume: 27 start-page: 265 year: 2009 ident: ref_24 article-title: Iterative hard thresholding for compressed sensing publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2009.04.002 – volume: 271 start-page: 179 year: 2014 ident: ref_19 article-title: Two soft–Thresholding based iterative algorithms for image deblurring publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.089 – volume: 26 start-page: 301 year: 2009 ident: ref_23 article-title: Cosamp: Iterative signal recovery from incomplete and inaccurate samples publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2008.07.002 – volume: 90 start-page: 1402 year: 2010 ident: ref_9 article-title: On compressive sensing applied to radar publication-title: Signal Process. doi: 10.1016/j.sigpro.2009.11.009 – volume: 48 start-page: 3824 year: 2010 ident: ref_10 article-title: Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2048575 – ident: ref_14 doi: 10.1109/APSAR.2009.5374118 – volume: 6 start-page: 567 year: 2009 ident: ref_4 article-title: Achieving higher resolution ISAR imaging with limited pulses via compressed sampling publication-title: IEEE Geosci. Remote Sens. doi: 10.1109/LGRS.2009.2021584 – ident: ref_6 – volume: 8 start-page: 218 year: 2014 ident: ref_30 article-title: Efficient imaging and real-time display of scanning ion conductance microscopy based on block compressive sensing publication-title: Int. J. Optom. – ident: ref_20 doi: 10.1109/ICASSP.2009.4960294 – volume: 48 start-page: 4285 year: 2010 ident: ref_28 article-title: A novel strategy for radar imaging based on compressive sensing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2051231 – ident: ref_13 doi: 10.1109/SSP.2007.4301298 – volume: 29 start-page: 2209 year: 2012 ident: ref_21 article-title: Compressive radar imaging methods based on fast smoothed l0 algorithm publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.01.289 – ident: ref_12 doi: 10.1109/RADAR.2008.4720896 – volume: 57 start-page: 289 year: 2009 ident: ref_25 article-title: A fast approach for overcomplete sparse decomposition based on smoothed l0 norm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.2007606 – ident: ref_3 doi: 10.1109/RADAR.2007.374203 – ident: ref_31 doi: 10.1109/DCC.2010.90 – volume: 9 start-page: 665 year: 2015 ident: ref_26 article-title: State of the art and prospects of structured sensing matrices in compressed sensing publication-title: Front. Comput. Sci. doi: 10.1007/s11704-015-3326-8 – volume: 98 start-page: 1006 year: 2010 ident: ref_7 article-title: Sparsity and compressed sensing in radar imaging publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2037526 – volume: 55 start-page: 889 year: 2012 ident: ref_17 article-title: 2D sparse signal recovery via 2D orthogonal matching pursuit publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-012-4551-5 – volume: 346 start-page: 589 year: 2008 ident: ref_27 article-title: The restricted isometry property and its implications for compressed sensing publication-title: Comptes Rendus Math. doi: 10.1016/j.crma.2008.03.014 |
| SSID | ssj0000331904 |
| Score | 2.1586564 |
| Snippet | Compressive radar imaging has attracted considerable attention because it substantially reduces imaging time through directly compressive sampling. However, a... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 619 |
| SubjectTerms | Algorithms Complexity Computation Computer applications Data processing Experiments Image reconstruction International conferences Iterative methods Radar Radar imaging Radar systems Recovery Remote sensing Sampling Signal processing Signal reconstruction Space surveillance Surveillance Theory Time compression Two dimensional models |
| Title | 2D Normalized Iterative Hard Thresholding Algorithm for Fast Compressive Radar Imaging |
| URI | https://www.proquest.com/docview/2195440413 |
| Volume | 9 |
| WOSCitedRecordID | wos000404623900110&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aBb34Fqu1BPHgZTHue09StcWClsUX6mXJJqkt9OXuKujB3-5MmlYF8eIll2TZJZP9ZjIzfB8h-zwKUlQltITb5hZE4KnFkQkTcFBx7nLhtzW7_kXQaoX391FsEm65aaucYKIGajkUmCM_tJGazGWAucejZwtVo7C6aiQ0ZskcsiQc6da962mOhTlwwJg7JhRy4HZ_mOURg5AdeXW-u6GfKKxdS2P5vx-1QpZMUElr41OwSmbUYI0sGH3zzts6ubPPaAuj0173XUna1FTKgHMUC_f0BuyZmzIUrfWe4A1Fp08hnKUNnhcUMUO3y8IDV1zyjDb7Wtxog9w26jen55ZRVLCEHdmFFXFw14oJh0Pg40jpczCUz1QYONIPfSkCn7siZKlUGHXbyvUkNm5yTHzwSDmbpDQYDtQWocxjClCW8VB6rq2iVIr2UTtMfTC3n7pBmRxMNjgRhm4cVS96CVw70BbJ1BZlsjddOhpzbPy2qDIxQWJ-szz52v_tv6d3yKKN_linTyqkVGQvapfMi9eim2dVMndSb8VXVX0hr-ozhONHHcbYe4T5uHkZP3wCyAjS4Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB6lCRK98CwqlMcKgcTFYllv_DggFDVEWIQoQmkFJ7Pe3QBSCBCbIvqj-hs749gBJMSNA2evLa_n0zePHX8DsKVCP6GphI6WfeVgBJ44ipQwkQetUlJpr5-r67f9Tic4Owu7FfhX_gtDbZUlJ-ZEbW411ch3BUmTSY6ce3B379DUKDpdLUdojGFxbJ8eMWVL96Mm2ndbiNZh7-eRU0wVcLQIReaECl2W5dpV6PxdYzyFL-txG_iu8QLPaN9TUgc8MZYiT2Fl3VDzoqLkX4XWxed-gZoksFeh1o1OuueTqg53EdJcjiWMXDfku6M05JgkkJLPS8f3mvdzZ9aa_WyfYQ5mirCZNcY4n4eKHS7AdDHB_eppEX6LJutQ_D24_msNi3KxaGRyRq0JrIeITYuDNtYYXOKOsqsbhgE7a6k0Y8SKeUMw3nCqjBqx6CYf3_QNfn3ItpagOrwd2u_AeJ1b9CNcBaYuhQ0To_t7_SDxENBeIv1l2CkNGutCUJ3megxiTKzI9vHE9suwOVl6N1YReWvRamnyuCCSNH6298r7lzdg-qh30o7bUef4B3wVFH3kxaJVqGajB7sGU_pPdp2O1gvMMrj4aHz8B3uZKXo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60inrxLdbnIgpeQtdNmsdBRKzFopQiKuIlbnY3VqhVm6joT_PXOZMmVUG8efCcTchmPua1k-8D2JSBF5EqoaWcWFqYgUeWJCZM9INGSkcqN87Y9U-8ZtO_vAxaQ_Be_AtDY5WFT8wctb5X1COvCKImczj63Eqcj0W0avW9h0eLFKTopLWQ0-hD5Ni8vmD5luw2amjrLSHqh2cHR1auMGApEYjUCiSGL8OVLTERsLV2Jb64y43v2dr1Xa08VzrK55E2lIUK41Q1DTJKagTIwNj43GEY8bDGpHHCVvVq0N_hNoKbO30yI9sOeKWXBBzLBeL0-RoCv0eALKzVp_7zB5mGyTyZZvt99M_AkOnOwniu695-nYMLUWNNyso7t29Gs0ZGIY3-ndHAAjtDHCf58Rvb79zgjtL2HcM0ntVlkjLyldmYMN5wKrXsscZdJuo0D-d_sq0FKHXvu2YRGK9yg9GFS19XHWGCSKt4J_YjREDkRo5Xhu3CuKHKadZJ7aMTYrlFOAgHOCjDxmDpQ59b5KdFK4X5w9y9JOGn7Zd-v7wOYwiK8KTRPF6GCUEpSdZBWoFS2nsyqzCqntPbpLeWgZfB9V-D4wNHFzDd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+Normalized+Iterative+Hard+Thresholding+Algorithm+for+Fast+Compressive+Radar+Imaging&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Gongxin&rft.au=Yang%2C+Jia&rft.au=Yang%2C+Wenguang&rft.au=Wang%2C+Yuechao&rft.date=2017-06-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=9&rft.issue=6&rft_id=info:doi/10.3390%2Frs9060619&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |