2D Normalized Iterative Hard Thresholding Algorithm for Fast Compressive Radar Imaging

Compressive radar imaging has attracted considerable attention because it substantially reduces imaging time through directly compressive sampling. However, a problem that must be addressed for compressive radar imaging systems is the high computational complexity of reconstruction of sparse signals...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 9; číslo 6; s. 619
Hlavní autoři: Li, Gongxin, Yang, Jia, Yang, Wenguang, Wang, Yuechao, Wang, Wenxue, Liu, Lianqing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2017
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Compressive radar imaging has attracted considerable attention because it substantially reduces imaging time through directly compressive sampling. However, a problem that must be addressed for compressive radar imaging systems is the high computational complexity of reconstruction of sparse signals. In this paper, a novel algorithm, called two-dimensional (2D) normalized iterative hard thresholding (NIHT) or 2D-NIHT algorithm, is proposed to directly reconstruct radar images in the matrix domain. The reconstruction performance of 2D-NIHT algorithm was validated by an experiment on recovering a synthetic 2D sparse signal, and the superiority of the 2D-NIHT algorithm to the NIHT algorithm was demonstrated by a comprehensive comparison of its reconstruction performance. Moreover, to be used in compressive radar imaging systems, a 2D sampling model was also proposed to compress the range and azimuth data simultaneously. The practical application of the 2D-NIHT algorithm in radar systems was validated by recovering two radar scenes with noise at different signal-to-noise ratios, and the results showed that the 2D-NIHT algorithm could reconstruct radar scenes with a high probability of exact recovery in the matrix domain. In addition, the reconstruction performance of the 2D-NIHT algorithm was compared with four existing efficient reconstruction algorithms using the two radar scenes, and the results illustrated that, compared to the other algorithms, the 2D-NIHT algorithm could dramatically reduce the computational complexity in signal reconstruction and successfully reconstruct 2D sparse images with a high probability of exact recovery.
AbstractList Compressive radar imaging has attracted considerable attention because it substantially reduces imaging time through directly compressive sampling. However, a problem that must be addressed for compressive radar imaging systems is the high computational complexity of reconstruction of sparse signals. In this paper, a novel algorithm, called two-dimensional (2D) normalized iterative hard thresholding (NIHT) or 2D-NIHT algorithm, is proposed to directly reconstruct radar images in the matrix domain. The reconstruction performance of 2D-NIHT algorithm was validated by an experiment on recovering a synthetic 2D sparse signal, and the superiority of the 2D-NIHT algorithm to the NIHT algorithm was demonstrated by a comprehensive comparison of its reconstruction performance. Moreover, to be used in compressive radar imaging systems, a 2D sampling model was also proposed to compress the range and azimuth data simultaneously. The practical application of the 2D-NIHT algorithm in radar systems was validated by recovering two radar scenes with noise at different signal-to-noise ratios, and the results showed that the 2D-NIHT algorithm could reconstruct radar scenes with a high probability of exact recovery in the matrix domain. In addition, the reconstruction performance of the 2D-NIHT algorithm was compared with four existing efficient reconstruction algorithms using the two radar scenes, and the results illustrated that, compared to the other algorithms, the 2D-NIHT algorithm could dramatically reduce the computational complexity in signal reconstruction and successfully reconstruct 2D sparse images with a high probability of exact recovery.
Author Yang, Wenguang
Liu, Lianqing
Li, Gongxin
Yang, Jia
Wang, Yuechao
Wang, Wenxue
Author_xml – sequence: 1
  givenname: Gongxin
  orcidid: 0000-0003-2263-0225
  surname: Li
  fullname: Li, Gongxin
– sequence: 2
  givenname: Jia
  surname: Yang
  fullname: Yang, Jia
– sequence: 3
  givenname: Wenguang
  orcidid: 0000-0002-1560-665X
  surname: Yang
  fullname: Yang, Wenguang
– sequence: 4
  givenname: Yuechao
  surname: Wang
  fullname: Wang, Yuechao
– sequence: 5
  givenname: Wenxue
  surname: Wang
  fullname: Wang, Wenxue
– sequence: 6
  givenname: Lianqing
  surname: Liu
  fullname: Liu, Lianqing
BookMark eNptkEtLAzEQgINUsNYe_AcBTx7Wzib7yrFUawtFQarXZbpJ2y27mzqJgv56Uyoi4lxmDt83r3PW62xnGLuM4UZKBSNyCjLIYnXC-gJyESVCid6v-owNndtBCCljBUmfvYhb_mCpxab-NJrPvSH09bvhMyTNl1sybmsbXXcbPm42lmq_bfnaEp-i83xi230g3EF4Qo3E5y1uAnzBTtfYODP8zgP2PL1bTmbR4vF-Phkvoips4yOFcSoMVBJTSKXWGa4KlYEpcqmzItNVnmFSFbDSJs-DYZJUgwKBAEqiMnLAro5992Rf34zz5c6-URdGliJWaZJAEstAjY5URdY5Muuyqn0403aesG7KGMrD_8qf_wXj-o-xp7pF-viH_QIRl3Dr
CitedBy_id crossref_primary_10_1002_adbi_201800319
crossref_primary_10_3390_math13010037
crossref_primary_10_3390_rs9121284
crossref_primary_10_1039_C9NR01688K
crossref_primary_10_1016_j_micron_2018_07_007
Cites_doi 10.1016/j.sigpro.2014.03.039
10.1016/j.sigpro.2011.01.002
10.1109/JSTSP.2010.2042411
10.1007/s11277-015-2911-3
10.1007/s10994-005-3561-6
10.1109/MSP.2007.4286571
10.1117/12.777175
10.1109/TNANO.2015.2449871
10.1109/TSP.2009.2014277
10.1016/j.acha.2009.04.002
10.1016/j.ins.2014.02.089
10.1016/j.acha.2008.07.002
10.1016/j.sigpro.2009.11.009
10.1109/TGRS.2010.2048575
10.1109/APSAR.2009.5374118
10.1109/LGRS.2009.2021584
10.1109/ICASSP.2009.4960294
10.1109/TGRS.2010.2051231
10.1109/SSP.2007.4301298
10.1016/j.proeng.2012.01.289
10.1109/RADAR.2008.4720896
10.1109/TSP.2008.2007606
10.1109/RADAR.2007.374203
10.1109/DCC.2010.90
10.1007/s11704-015-3326-8
10.1109/JPROC.2009.2037526
10.1007/s11432-012-4551-5
10.1016/j.crma.2008.03.014
ContentType Journal Article
Copyright 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.3390/rs9060619
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest MSED
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID 10_3390_rs9060619
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c292t-9a152e0c3a5053dd6ab8960e873d686dc76a4c80bde77292e45d0902a0093a9e3
IEDL.DBID M7S
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404623900110&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Jul 25 11:59:59 EDT 2025
Tue Nov 18 21:39:48 EST 2025
Sat Nov 29 07:09:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-9a152e0c3a5053dd6ab8960e873d686dc76a4c80bde77292e45d0902a0093a9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2263-0225
0000-0002-1560-665X
OpenAccessLink https://www.proquest.com/docview/2195440413?pq-origsite=%requestingapplication%
PQID 2195440413
PQPubID 2032338
ParticipantIDs proquest_journals_2195440413
crossref_citationtrail_10_3390_rs9060619
crossref_primary_10_3390_rs9060619
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Blumensath (ref_24) 2009; 27
Mohimani (ref_25) 2009; 57
Needell (ref_23) 2009; 26
Eftekhari (ref_16) 2011; 91
ref_14
ref_13
Chen (ref_18) 2014; 104
Li (ref_29) 2015; 14
ref_12
ref_11
Zhang (ref_10) 2010; 48
ref_31
Li (ref_30) 2014; 8
Alonso (ref_28) 2010; 48
Wen (ref_8) 2015; 85
Ye (ref_15) 2005; 61
Zhang (ref_4) 2009; 6
Candes (ref_27) 2008; 346
Ender (ref_9) 2010; 90
Huang (ref_19) 2014; 271
Blumensath (ref_22) 2010; 4
Herman (ref_1) 2009; 57
Baraniuk (ref_2) 2007; 24
Potter (ref_7) 2010; 98
ref_20
Li (ref_26) 2015; 9
ref_3
Fang (ref_17) 2012; 55
Liu (ref_21) 2012; 29
ref_5
ref_6
References_xml – volume: 104
  start-page: 15
  year: 2014
  ident: ref_18
  article-title: Iterative gradient projection algorithm for two–Dimensional compressive sensing sparse image reconstruction
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.03.039
– ident: ref_11
– volume: 91
  start-page: 1589
  year: 2011
  ident: ref_16
  article-title: Two–Dimensional random projection
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.01.002
– volume: 4
  start-page: 298
  year: 2010
  ident: ref_22
  article-title: Normalized iterative hard thresholding: Guaranteed stability and performance
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2010.2042411
– volume: 85
  start-page: 2393
  year: 2015
  ident: ref_8
  article-title: Multi-way compressive sensing based 2D DOA estimation algorithm for monostatic mimo radar with arbitrary arrays
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-015-2911-3
– volume: 61
  start-page: 167
  year: 2005
  ident: ref_15
  article-title: Generalized low rank approximations of matrices
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-005-3561-6
– volume: 24
  start-page: 118
  year: 2007
  ident: ref_2
  article-title: Compressive sensing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.4286571
– ident: ref_5
  doi: 10.1117/12.777175
– volume: 14
  start-page: 837
  year: 2015
  ident: ref_29
  article-title: Nano–Manipulation based on real–Time compressive tracking
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2015.2449871
– volume: 57
  start-page: 2275
  year: 2009
  ident: ref_1
  article-title: High-resolution radar via compressed sensing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2014277
– volume: 27
  start-page: 265
  year: 2009
  ident: ref_24
  article-title: Iterative hard thresholding for compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2009.04.002
– volume: 271
  start-page: 179
  year: 2014
  ident: ref_19
  article-title: Two soft–Thresholding based iterative algorithms for image deblurring
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.089
– volume: 26
  start-page: 301
  year: 2009
  ident: ref_23
  article-title: Cosamp: Iterative signal recovery from incomplete and inaccurate samples
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2008.07.002
– volume: 90
  start-page: 1402
  year: 2010
  ident: ref_9
  article-title: On compressive sensing applied to radar
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2009.11.009
– volume: 48
  start-page: 3824
  year: 2010
  ident: ref_10
  article-title: Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2048575
– ident: ref_14
  doi: 10.1109/APSAR.2009.5374118
– volume: 6
  start-page: 567
  year: 2009
  ident: ref_4
  article-title: Achieving higher resolution ISAR imaging with limited pulses via compressed sampling
  publication-title: IEEE Geosci. Remote Sens.
  doi: 10.1109/LGRS.2009.2021584
– ident: ref_6
– volume: 8
  start-page: 218
  year: 2014
  ident: ref_30
  article-title: Efficient imaging and real-time display of scanning ion conductance microscopy based on block compressive sensing
  publication-title: Int. J. Optom.
– ident: ref_20
  doi: 10.1109/ICASSP.2009.4960294
– volume: 48
  start-page: 4285
  year: 2010
  ident: ref_28
  article-title: A novel strategy for radar imaging based on compressive sensing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2051231
– ident: ref_13
  doi: 10.1109/SSP.2007.4301298
– volume: 29
  start-page: 2209
  year: 2012
  ident: ref_21
  article-title: Compressive radar imaging methods based on fast smoothed l0 algorithm
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.01.289
– ident: ref_12
  doi: 10.1109/RADAR.2008.4720896
– volume: 57
  start-page: 289
  year: 2009
  ident: ref_25
  article-title: A fast approach for overcomplete sparse decomposition based on smoothed l0 norm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.2007606
– ident: ref_3
  doi: 10.1109/RADAR.2007.374203
– ident: ref_31
  doi: 10.1109/DCC.2010.90
– volume: 9
  start-page: 665
  year: 2015
  ident: ref_26
  article-title: State of the art and prospects of structured sensing matrices in compressed sensing
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-015-3326-8
– volume: 98
  start-page: 1006
  year: 2010
  ident: ref_7
  article-title: Sparsity and compressed sensing in radar imaging
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2037526
– volume: 55
  start-page: 889
  year: 2012
  ident: ref_17
  article-title: 2D sparse signal recovery via 2D orthogonal matching pursuit
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-012-4551-5
– volume: 346
  start-page: 589
  year: 2008
  ident: ref_27
  article-title: The restricted isometry property and its implications for compressed sensing
  publication-title: Comptes Rendus Math.
  doi: 10.1016/j.crma.2008.03.014
SSID ssj0000331904
Score 2.1586564
Snippet Compressive radar imaging has attracted considerable attention because it substantially reduces imaging time through directly compressive sampling. However, a...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 619
SubjectTerms Algorithms
Complexity
Computation
Computer applications
Data processing
Experiments
Image reconstruction
International conferences
Iterative methods
Radar
Radar imaging
Radar systems
Recovery
Remote sensing
Sampling
Signal processing
Signal reconstruction
Space surveillance
Surveillance
Theory
Time compression
Two dimensional models
Title 2D Normalized Iterative Hard Thresholding Algorithm for Fast Compressive Radar Imaging
URI https://www.proquest.com/docview/2195440413
Volume 9
WOSCitedRecordID wos000404623900110&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA5uoBd3cXQcgnjwUqxNl_QkLjM4B4cyLqiXkiYZFWazrYIe_O2-l8mMCuLFSy9Jacl7eTvfR8gehACgBlw4ntKhg601R2QSW4g8ZHAzA6G5IZuIWi1-exsntuBW2LHKsU00hloNJNbIDzyEJvNdsLlHw2cHWaOwu2opNKbJLKIkHJrRvctJjcVloGCuPwIUYpDdH-RF7ELIjrg6393QTytsXEtj6b8_tUwWbVBJj0dasEKmdH-VzFt-88e3NXLjndEWRqfdp3etaNNAKYOdo9i4p1cgz8K2oehx9wG-UD72KISztCGKkqLNMOOy8EJbKJHTZs-QG62T60b96vTcsYwKjvRir3RiAe5au5IJCHyYUqHIOKQwmkdMhTxUMgqFL7mbKY1Rt6f9QOHgpsDCh4g12yAz_UFfbxIKiUiQBdJlvKP8UDEeeKoTh1mktIAkSVfI_viAU2nhxpH1optC2oGySCeyqJDdydbhCGPjt03VsQhSe82K9Ov8t_5e3iYLHvpjUz6pkpkyf9E7ZE6-lk9FXiOzJ_VW0q6ZhLxmdAifH3V4JsE9rCfNi-TuExu30fg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NS8NAEB20CnrxW_x2EQUvwbCbpJuDiKjFoJYiVfQUN7tbFWrVJir6o_yNzqRJVRBvHjxnE9jMy8ybnck8gHWkAAgDqRxubOBQac1RiaYSogwEfpm-sjIXm6jW6_LiImwMwHv5Lwy1VZY-MXfU5l7TGfkWp9Fknos-d-fh0SHVKKqulhIaPVgc2dcXTNnS7Wgf7bvBee2guXfoFKoCjuYhz5xQYciyrhYKg78wJlCJRBpvZVWYQAZGVwPlaekmxhLz5NbzDTUvKkr-VWgFPncQhjwCewWGGtFJ47J_quMKhLTr9UYYCRG6W900dDFJoEk-XwPfd7-fB7Pa-H97DRMwVtBmttvD-SQM2M4UjBQK7jev03DO91md-Hf79s0aFuXDotGTM2pNYE1EbFoU2thu-xp3lN3cMSTsrKbSjJFXzBuC8YZTZVSXRXe5fNMMnP3Jtmah0rnv2DlgmGr5ia9dIVvGC4yQPjetMEiqxipMA-08bJYGjXUxUJ10PdoxJlZk-7hv-3lY6y996E0R-WnRUmnyuHAkafxp74XfL6_CyGHz5Dg-jupHizDKiX3kh0VLUMm6T3YZhvVzdpt2VwrMMrj6a3x8AKfpKJE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB58oV58i28XUfASGnbz2BxExFosSimiIl7iZnerQq3aREV_mr_OmTSpCuLNg-dsApv5MvPNzmQ-gE2kAAgDqRxubOBQac1RiaYSogwEfpm-sjIXmwgbDXlxETUH4L38F4baKkufmDtqc6_pjLzCaTSZ56LPrbSKtohmtbb78OiQghRVWks5jR5EjuzrC6Zv6U69irbe4rx2cLp_6BQKA47mEc-cSGH4sq4WComAMCZQiURKb2UoTCADo8NAeVq6ibHEQrn1fEONjIoOAlRkBT53EIZDzDGpnbDpX_bPd1yB4Ha93jAjISK30k0jF9MFmunzNQR-jwB5WKtN_ucXMgUTBZlmez30T8OA7czAWKHrfvM6C-e8yhrEytu3b9awej5CGv07o4YFdoo4TovyG9trX-OOsps7hjSe1VSaMfKVeZsw3nCijOqy-l0u6jQHZ3-yrXkY6tx37AIwTMD8xNeukC3jBUZIn5tWFCShsQqTQ7sI26VxY12MWSe1j3aM6RbhIO7jYBE2-ksferNFflq0Upo_LtxLGn_afun3y-swiqCIj-uNo2UY50RJ8hOkFRjKuk92FUb0c3abdtdy8DK4-mtwfABgZC_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+Normalized+Iterative+Hard+Thresholding+Algorithm+for+Fast+Compressive+Radar+Imaging&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Gongxin&rft.au=Yang%2C+Jia&rft.au=Yang%2C+Wenguang&rft.au=Wang%2C+Yuechao&rft.date=2017-06-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=9&rft.issue=6&rft_id=info:doi/10.3390%2Frs9060619&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon