Probability-Based Identification of Hammerstein Systems With Asymmetric Noise Characteristics

In the existing identification algorithms, the output noise is usually modeled by using the thick-tailed Laplace and Student's t-distributions instead of the Gaussian distribution to acquire the robustness for the outliers. However, both Laplace and Student's t-distributions exhibit symmet...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 73; s. 1 - 11
Hlavní autoři: Liu, Xin, Wang, Chen, Dai, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the existing identification algorithms, the output noise is usually modeled by using the thick-tailed Laplace and Student's t-distributions instead of the Gaussian distribution to acquire the robustness for the outliers. However, both Laplace and Student's t-distributions exhibit symmetric statistical properties which can lead to certain limitations. In this article, we introduce a robust identification algorithm for Hammerstein output error (OE) systems based on the shifted asymmetric Laplace (SAL) distribution in order to handle the skewed and asymmetric output noise. The skewness parameter and scale parameter of the SAL distribution act as the hyperparameters to govern the statistical property of the SAL distribution and both of them are adaptively extracted from the identification data. That means the statistical property of the SAL distribution is adaptively adjusted by the identification data quality, which could ensure the robustness of the introduced algorithm for the skewed and asymmetric noise as well as the outliers. In addition, the auxiliary model technique is used to solve the problem of unmeasurable process variables of the Hammerstein system; the key-term separation principle is used to reduce the computation complexity of the algorithm. The complete identification problem is mathematically formulated by using the generalized expectation maximization (GEM) algorithm and the estimation formulas of the model and noise parameters are derived simultaneously. Finally, the effectiveness of the algorithm introduced in this article is verified.
AbstractList In the existing identification algorithms, the output noise is usually modeled by using the thick-tailed Laplace and Student’s t-distributions instead of the Gaussian distribution to acquire the robustness for the outliers. However, both Laplace and Student’s t-distributions exhibit symmetric statistical properties which can lead to certain limitations. In this article, we introduce a robust identification algorithm for Hammerstein output error (OE) systems based on the shifted asymmetric Laplace (SAL) distribution in order to handle the skewed and asymmetric output noise. The skewness parameter and scale parameter of the SAL distribution act as the hyperparameters to govern the statistical property of the SAL distribution and both of them are adaptively extracted from the identification data. That means the statistical property of the SAL distribution is adaptively adjusted by the identification data quality, which could ensure the robustness of the introduced algorithm for the skewed and asymmetric noise as well as the outliers. In addition, the auxiliary model technique is used to solve the problem of unmeasurable process variables of the Hammerstein system; the key-term separation principle is used to reduce the computation complexity of the algorithm. The complete identification problem is mathematically formulated by using the generalized expectation maximization (GEM) algorithm and the estimation formulas of the model and noise parameters are derived simultaneously. Finally, the effectiveness of the algorithm introduced in this article is verified.
Author Dai, Wei
Liu, Xin
Wang, Chen
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-2504-8962
  surname: Liu
  fullname: Liu, Xin
  organization: Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Chen
  orcidid: 0000-0001-7216-3093
  surname: Wang
  fullname: Wang, Chen
  organization: College of Information Science and Engineering, Hohai University, Changzhou, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0003-3057-7225
  surname: Dai
  fullname: Dai, Wei
  email: daiwei_neu@126.com
  organization: Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, China
BookMark eNp9kL1PwzAQxS1UJNrCzsBgiTnFH7ETj6UCWokviSImFDnORXXVJMV2h_z3uLQDYmB6J9373em9ERq0XQsIXVIyoZSom-XiacII4xPOuUx5doKGVIgsUVKyARoSQvNEpUKeoZH3a0JIJtNsiD5fXVfq0m5s6JNb7aHCiwraYGtrdLBdi7saz3XTgPMBbIvf-qiNxx82rPDU93ETnDX4ubMe8GylnTYBnPXBGn-OTmu98XBx1DF6v79bzubJ48vDYjZ9TAxTLCSKVKUgilU0M6UWpeZ5WYoYIue1oHHSFRggQFiZypyrilJB66wCClwoI_gYXR_ubl33tQMfinW3c218WTBFUplxxXh0yYPLuM57B3VhbPgJGZy2m4KSYl9lEass9lUWxyojSP6AW2cb7fr_kKsDYgHgl53zNM0I_wYb34Hk
CODEN IEIMAO
CitedBy_id crossref_primary_10_1002_rnc_70123
crossref_primary_10_1109_TASE_2025_3534849
crossref_primary_10_1038_s41598_024_83641_8
crossref_primary_10_1109_TIM_2025_3548225
Cites_doi 10.1109/TSMC.2017.2689920
10.1109/TSMC.2021.3071137
10.1016/j.camwa.2010.02.030
10.1007/s00034-021-01801-x
10.1109/TIE.2021.3071679
10.1109/TCST.2019.2947868
10.1002/cjce.20113
10.1109/TAC.2022.3180810
10.1109/TII.2017.2702754
10.1109/TIM.2021.3067242
10.1109/LCOMM.2021.3133018
10.1007/s00034-022-02112-5
10.1016/j.automatica.2010.10.013
10.1109/TIE.2020.3026286
10.1109/TIE.2017.2733465
10.1016/j.jfranklin.2020.03.027
10.1109/TSMC.2019.2945500
10.1109/TSMC.2019.2943882
10.1109/TAC.2022.3171389
10.1002/rnc.5468
10.1002/rnc.4961
10.1109/LCSYS.2022.3184275
10.1109/TIE.2020.3028806
10.1109/TII.2019.2931792
10.1016/j.dsp.2022.103595
10.1016/j.ymssp.2018.12.027
10.1109/TSMC.2019.2949087
10.1109/TPAMI.2013.216
10.1016/j.jfranklin.2018.01.052
10.1109/TSP.2018.2865434
10.1109/TAC.2020.3007569
10.1002/acs.3604
10.1016/j.sysconle.2006.10.026
10.1109/TPWRS.2021.3131639
10.1109/TCST.2021.3111107
10.1002/acs.2752
10.1109/TAC.2021.3131433
10.1016/j.jfranklin.2021.04.006
10.1007/978-1-4612-0173-1
10.1109/LSP.2017.2720542
10.1109/TVT.2015.2396640
10.1109/tim.2022.3155778
10.1002/rnc.6657
10.1109/ICCCBDA.2018.8386559
10.1002/rnc.5675
10.1016/j.patrec.2015.02.011
10.1002/acs.3257
10.1109/TIE.2018.2826450
10.1109/TIM.2020.3009354
10.1109/TSP.2022.3180195
10.1016/j.mcm.2010.03.002
10.1109/TEC.2021.3093010
10.1109/TIM.2021.3132913
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3336437
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2023_3336437
10334470
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFB3304700
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62103134; 62373361
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu
  grantid: BK20200183
  funderid: 10.13039/501100004608
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M743776
  funderid: 10.13039/501100002858
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-90db5092d17cba5ba38bb543783f51b54adece0e02b46839d1151f7de1e359c53
IEDL.DBID RIE
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001132683400180&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:20:40 EDT 2025
Sat Nov 29 04:38:43 EST 2025
Tue Nov 18 22:30:38 EST 2025
Wed Aug 27 02:24:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-90db5092d17cba5ba38bb543783f51b54adece0e02b46839d1151f7de1e359c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3057-7225
0000-0002-2504-8962
0000-0001-7216-3093
PQID 2904673923
PQPubID 85462
PageCount 11
ParticipantIDs crossref_primary_10_1109_TIM_2023_3336437
proquest_journals_2904673923
ieee_primary_10334470
crossref_citationtrail_10_1109_TIM_2023_3336437
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Ding (ref12) 2013
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Ding (ref8) 2018
ref49
ref9
ref4
ref5
ref40
ref35
ref34
Ding (ref7) 2016
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Ljung (ref3) 1999
ref24
ref23
ref26
ref25
Ding (ref6) 2017
ref20
Madsen (ref56) 2004
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref58
  doi: 10.1109/TSMC.2017.2689920
– volume-title: System Identification: Theory for the User
  year: 1999
  ident: ref3
– ident: ref45
  doi: 10.1109/TSMC.2021.3071137
– ident: ref33
  doi: 10.1016/j.camwa.2010.02.030
– ident: ref10
  doi: 10.1007/s00034-021-01801-x
– ident: ref17
  doi: 10.1109/TIE.2021.3071679
– ident: ref44
  doi: 10.1109/TCST.2019.2947868
– ident: ref59
  doi: 10.1002/cjce.20113
– ident: ref5
  doi: 10.1109/TAC.2022.3180810
– ident: ref57
  doi: 10.1109/TII.2017.2702754
– ident: ref11
  doi: 10.1109/TIM.2021.3067242
– ident: ref18
  doi: 10.1109/LCOMM.2021.3133018
– ident: ref30
  doi: 10.1007/s00034-022-02112-5
– ident: ref9
  doi: 10.1016/j.automatica.2010.10.013
– ident: ref28
  doi: 10.1109/TIE.2020.3026286
– ident: ref55
  doi: 10.1109/TIE.2017.2733465
– ident: ref23
  doi: 10.1016/j.jfranklin.2020.03.027
– ident: ref1
  doi: 10.1109/TSMC.2019.2945500
– ident: ref2
  doi: 10.1109/TSMC.2019.2943882
– ident: ref19
  doi: 10.1109/TAC.2022.3171389
– ident: ref27
  doi: 10.1002/rnc.5468
– ident: ref36
  doi: 10.1002/rnc.4961
– ident: ref13
  doi: 10.1109/LCSYS.2022.3184275
– ident: ref16
  doi: 10.1109/TIE.2020.3028806
– ident: ref41
  doi: 10.1109/TII.2019.2931792
– ident: ref43
  doi: 10.1016/j.dsp.2022.103595
– volume-title: System Identification-Iterative Search Principle and Identification Methods
  year: 2018
  ident: ref8
– ident: ref38
  doi: 10.1016/j.ymssp.2018.12.027
– ident: ref48
  doi: 10.1109/TSMC.2019.2949087
– ident: ref53
  doi: 10.1109/TPAMI.2013.216
– ident: ref29
  doi: 10.1016/j.jfranklin.2018.01.052
– volume-title: System Identification-New Theory and Methods
  year: 2013
  ident: ref12
– ident: ref49
  doi: 10.1109/TSP.2018.2865434
– ident: ref15
  doi: 10.1109/TAC.2020.3007569
– ident: ref31
  doi: 10.1002/acs.3604
– ident: ref51
  doi: 10.1016/j.sysconle.2006.10.026
– ident: ref4
  doi: 10.1109/TPWRS.2021.3131639
– ident: ref24
  doi: 10.1109/TCST.2021.3111107
– volume-title: Methods for Non-Linear Least Squares Problems
  year: 2004
  ident: ref56
– volume-title: System Identification-Auxiliary Model Identification Idea and Methods
  year: 2017
  ident: ref6
– ident: ref42
  doi: 10.1002/acs.2752
– ident: ref14
  doi: 10.1109/TAC.2021.3131433
– ident: ref35
  doi: 10.1016/j.jfranklin.2021.04.006
– volume-title: System Identification-Multi-Innovation Identification Theory and Methods
  year: 2016
  ident: ref7
– ident: ref52
  doi: 10.1007/978-1-4612-0173-1
– ident: ref39
  doi: 10.1109/LSP.2017.2720542
– ident: ref50
  doi: 10.1109/TVT.2015.2396640
– ident: ref47
  doi: 10.1109/tim.2022.3155778
– ident: ref32
  doi: 10.1002/rnc.6657
– ident: ref40
  doi: 10.1109/ICCCBDA.2018.8386559
– ident: ref22
  doi: 10.1002/rnc.5675
– ident: ref54
  doi: 10.1016/j.patrec.2015.02.011
– ident: ref37
  doi: 10.1002/acs.3257
– ident: ref26
  doi: 10.1109/TIE.2018.2826450
– ident: ref46
  doi: 10.1109/TIM.2020.3009354
– ident: ref20
  doi: 10.1109/TSP.2022.3180195
– ident: ref34
  doi: 10.1016/j.mcm.2010.03.002
– ident: ref21
  doi: 10.1109/TEC.2021.3093010
– ident: ref25
  doi: 10.1109/TIM.2021.3132913
SSID ssj0007647
Score 2.5102692
Snippet In the existing identification algorithms, the output noise is usually modeled by using the thick-tailed Laplace and Student's t-distributions instead of the...
In the existing identification algorithms, the output noise is usually modeled by using the thick-tailed Laplace and Student’s t-distributions instead of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Computational modeling
Data mining
Generalized expectation maximization (GEM) algorithm
Hammerstein output error (OE) system
Identification
Mathematical models
Noise measurement
Normal distribution
Outliers (statistics)
Parameter estimation
Parameters
Process variables
robust parameter estimation
Robustness
Robustness (mathematics)
skewed and asymmetric noise
Statistical analysis
System identification
Title Probability-Based Identification of Hammerstein Systems With Asymmetric Noise Characteristics
URI https://ieeexplore.ieee.org/document/10334470
https://www.proquest.com/docview/2904673923
Volume 73
WOSCitedRecordID wos001132683400180&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86FPTgx1ScTsnBi4dsadOu7XEOh4KOHSbuIqX5woGssnbC_ntf0mxsiIK3QpNQ8uv7TN7vIXQD-g-soIgI6D5GAhmHJNaKEh1IQXmWhbIiSXqKBoN4PE6Grljd1sIopezlM9Uyj_YsX-ZiblJlIOHMENRBhL4dRZ2qWGuldqNOUBFkeiDB4BYszyRp0h49PrdMm_AWY8wcVG3YINtU5Ycmtualf_jPDztCB86PxN0K-GO0paZ1tL_GLlhHu_Z2pyhO0NtwBmJrr8EuyB3YLYmrAl3tMnY419jlsE33S-x4zPHrpHzH3WIBbwyTPx7kk0Lh3ibJ8yl66d-Peg_E9VUgwk_8kiRUcvATfOlFgmchz1jMeQj7EjMdevCUSSUUVdTnQQccKAleo6cjqTzFwkSE7AzVpvlUnSNsoi1Yk6tAgjnkNIbwRCRUSI9prYOsgdrLnU6FIx03vS8-Uht80CQFbFKDTeqwaaDb1YzPinDjj7GnBou1cRUMDdRcopk6kSxSP6FgFMAdZBe_TLtEe7B6UCVYmqhWzubqCu2Ir3JSzK7t3_YNQnbR0A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH6IC-rBtWJd5-DFQ-okM2mSYy2KYi09VPQiIbNhQVppWqH_3jeTqSii4G0gmSTMl7fOvO8BnKH-QysokwB1Hwu4SuMgNZoGhitJRVHEqiJJ6iTdbvr0lPV8sbqrhdFau8NnumGHbi9fjeTUpspQwpklqMMIfSnmPKJVudan4k2avKLIDFGG0TGY70rS7KJ_e9-wjcIbjDG7VfXNCrm2Kj90sTMw15v__LQt2PCeJGlV0G_Dgh7uwPoXfsEdWHHnO2W5C8-9MQquOwg7Cy7RcilSlegan7MjI0N8Ftv2vySeyZw8DiYvpFXO8Irl8ifd0aDUpP2d5rkGD9dX_fZN4DsrBDLKokmQUSXQU4hUmEhRxKJgqRAxrkvKTBziqFBaaqppJHgTXSiFfmNoEqVDzeJMxmwPFoejod4HYuMtfKbQXKFBFDTFAEVmVKqQGWN4UYeL-Urn0tOO2-4Xr7kLP2iWIza5xSb32NTh_HPGW0W58ce9NYvFl_sqGOpwNEcz90JZ5lFG0SygQ8gOfpl2Cqs3_ftO3rnt3h3CGr6JV-mWI1icjKf6GJbl-2RQjk_cn_cBVUvVFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probability-Based+Identification+of+Hammerstein+Systems+With+Asymmetric+Noise+Characteristics&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Liu%2C+Xin&rft.au=Wang%2C+Chen&rft.au=Dai%2C+Wei&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2023.3336437&rft.externalDocID=10334470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon