Probability-Based Identification of Hammerstein Systems With Asymmetric Noise Characteristics
In the existing identification algorithms, the output noise is usually modeled by using the thick-tailed Laplace and Student's t-distributions instead of the Gaussian distribution to acquire the robustness for the outliers. However, both Laplace and Student's t-distributions exhibit symmet...
Uloženo v:
| Vydáno v: | IEEE transactions on instrumentation and measurement Ročník 73; s. 1 - 11 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9456, 1557-9662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the existing identification algorithms, the output noise is usually modeled by using the thick-tailed Laplace and Student's t-distributions instead of the Gaussian distribution to acquire the robustness for the outliers. However, both Laplace and Student's t-distributions exhibit symmetric statistical properties which can lead to certain limitations. In this article, we introduce a robust identification algorithm for Hammerstein output error (OE) systems based on the shifted asymmetric Laplace (SAL) distribution in order to handle the skewed and asymmetric output noise. The skewness parameter and scale parameter of the SAL distribution act as the hyperparameters to govern the statistical property of the SAL distribution and both of them are adaptively extracted from the identification data. That means the statistical property of the SAL distribution is adaptively adjusted by the identification data quality, which could ensure the robustness of the introduced algorithm for the skewed and asymmetric noise as well as the outliers. In addition, the auxiliary model technique is used to solve the problem of unmeasurable process variables of the Hammerstein system; the key-term separation principle is used to reduce the computation complexity of the algorithm. The complete identification problem is mathematically formulated by using the generalized expectation maximization (GEM) algorithm and the estimation formulas of the model and noise parameters are derived simultaneously. Finally, the effectiveness of the algorithm introduced in this article is verified. |
|---|---|
| AbstractList | In the existing identification algorithms, the output noise is usually modeled by using the thick-tailed Laplace and Student’s t-distributions instead of the Gaussian distribution to acquire the robustness for the outliers. However, both Laplace and Student’s t-distributions exhibit symmetric statistical properties which can lead to certain limitations. In this article, we introduce a robust identification algorithm for Hammerstein output error (OE) systems based on the shifted asymmetric Laplace (SAL) distribution in order to handle the skewed and asymmetric output noise. The skewness parameter and scale parameter of the SAL distribution act as the hyperparameters to govern the statistical property of the SAL distribution and both of them are adaptively extracted from the identification data. That means the statistical property of the SAL distribution is adaptively adjusted by the identification data quality, which could ensure the robustness of the introduced algorithm for the skewed and asymmetric noise as well as the outliers. In addition, the auxiliary model technique is used to solve the problem of unmeasurable process variables of the Hammerstein system; the key-term separation principle is used to reduce the computation complexity of the algorithm. The complete identification problem is mathematically formulated by using the generalized expectation maximization (GEM) algorithm and the estimation formulas of the model and noise parameters are derived simultaneously. Finally, the effectiveness of the algorithm introduced in this article is verified. |
| Author | Dai, Wei Liu, Xin Wang, Chen |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0002-2504-8962 surname: Liu fullname: Liu, Xin organization: Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, China – sequence: 2 givenname: Chen orcidid: 0000-0001-7216-3093 surname: Wang fullname: Wang, Chen organization: College of Information Science and Engineering, Hohai University, Changzhou, China – sequence: 3 givenname: Wei orcidid: 0000-0003-3057-7225 surname: Dai fullname: Dai, Wei email: daiwei_neu@126.com organization: Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, China |
| BookMark | eNp9kL1PwzAQxS1UJNrCzsBgiTnFH7ETj6UCWokviSImFDnORXXVJMV2h_z3uLQDYmB6J9373em9ERq0XQsIXVIyoZSom-XiacII4xPOuUx5doKGVIgsUVKyARoSQvNEpUKeoZH3a0JIJtNsiD5fXVfq0m5s6JNb7aHCiwraYGtrdLBdi7saz3XTgPMBbIvf-qiNxx82rPDU93ETnDX4ubMe8GylnTYBnPXBGn-OTmu98XBx1DF6v79bzubJ48vDYjZ9TAxTLCSKVKUgilU0M6UWpeZ5WYoYIue1oHHSFRggQFiZypyrilJB66wCClwoI_gYXR_ubl33tQMfinW3c218WTBFUplxxXh0yYPLuM57B3VhbPgJGZy2m4KSYl9lEass9lUWxyojSP6AW2cb7fr_kKsDYgHgl53zNM0I_wYb34Hk |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1002_rnc_70123 crossref_primary_10_1109_TASE_2025_3534849 crossref_primary_10_1038_s41598_024_83641_8 crossref_primary_10_1109_TIM_2025_3548225 |
| Cites_doi | 10.1109/TSMC.2017.2689920 10.1109/TSMC.2021.3071137 10.1016/j.camwa.2010.02.030 10.1007/s00034-021-01801-x 10.1109/TIE.2021.3071679 10.1109/TCST.2019.2947868 10.1002/cjce.20113 10.1109/TAC.2022.3180810 10.1109/TII.2017.2702754 10.1109/TIM.2021.3067242 10.1109/LCOMM.2021.3133018 10.1007/s00034-022-02112-5 10.1016/j.automatica.2010.10.013 10.1109/TIE.2020.3026286 10.1109/TIE.2017.2733465 10.1016/j.jfranklin.2020.03.027 10.1109/TSMC.2019.2945500 10.1109/TSMC.2019.2943882 10.1109/TAC.2022.3171389 10.1002/rnc.5468 10.1002/rnc.4961 10.1109/LCSYS.2022.3184275 10.1109/TIE.2020.3028806 10.1109/TII.2019.2931792 10.1016/j.dsp.2022.103595 10.1016/j.ymssp.2018.12.027 10.1109/TSMC.2019.2949087 10.1109/TPAMI.2013.216 10.1016/j.jfranklin.2018.01.052 10.1109/TSP.2018.2865434 10.1109/TAC.2020.3007569 10.1002/acs.3604 10.1016/j.sysconle.2006.10.026 10.1109/TPWRS.2021.3131639 10.1109/TCST.2021.3111107 10.1002/acs.2752 10.1109/TAC.2021.3131433 10.1016/j.jfranklin.2021.04.006 10.1007/978-1-4612-0173-1 10.1109/LSP.2017.2720542 10.1109/TVT.2015.2396640 10.1109/tim.2022.3155778 10.1002/rnc.6657 10.1109/ICCCBDA.2018.8386559 10.1002/rnc.5675 10.1016/j.patrec.2015.02.011 10.1002/acs.3257 10.1109/TIE.2018.2826450 10.1109/TIM.2020.3009354 10.1109/TSP.2022.3180195 10.1016/j.mcm.2010.03.002 10.1109/TEC.2021.3093010 10.1109/TIM.2021.3132913 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2023.3336437 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 11 |
| ExternalDocumentID | 10_1109_TIM_2023_3336437 10334470 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFB3304700 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 62103134; 62373361 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu grantid: BK20200183 funderid: 10.13039/501100004608 – fundername: China Postdoctoral Science Foundation grantid: 2023M743776 funderid: 10.13039/501100002858 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-90db5092d17cba5ba38bb543783f51b54adece0e02b46839d1151f7de1e359c53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001132683400180&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:20:40 EDT 2025 Sat Nov 29 04:38:43 EST 2025 Tue Nov 18 22:30:38 EST 2025 Wed Aug 27 02:24:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-90db5092d17cba5ba38bb543783f51b54adece0e02b46839d1151f7de1e359c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3057-7225 0000-0002-2504-8962 0000-0001-7216-3093 |
| PQID | 2904673923 |
| PQPubID | 85462 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2023_3336437 proquest_journals_2904673923 ieee_primary_10334470 crossref_citationtrail_10_1109_TIM_2023_3336437 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Ding (ref12) 2013 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Ding (ref8) 2018 ref49 ref9 ref4 ref5 ref40 ref35 ref34 Ding (ref7) 2016 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Ljung (ref3) 1999 ref24 ref23 ref26 ref25 Ding (ref6) 2017 ref20 Madsen (ref56) 2004 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref58 doi: 10.1109/TSMC.2017.2689920 – volume-title: System Identification: Theory for the User year: 1999 ident: ref3 – ident: ref45 doi: 10.1109/TSMC.2021.3071137 – ident: ref33 doi: 10.1016/j.camwa.2010.02.030 – ident: ref10 doi: 10.1007/s00034-021-01801-x – ident: ref17 doi: 10.1109/TIE.2021.3071679 – ident: ref44 doi: 10.1109/TCST.2019.2947868 – ident: ref59 doi: 10.1002/cjce.20113 – ident: ref5 doi: 10.1109/TAC.2022.3180810 – ident: ref57 doi: 10.1109/TII.2017.2702754 – ident: ref11 doi: 10.1109/TIM.2021.3067242 – ident: ref18 doi: 10.1109/LCOMM.2021.3133018 – ident: ref30 doi: 10.1007/s00034-022-02112-5 – ident: ref9 doi: 10.1016/j.automatica.2010.10.013 – ident: ref28 doi: 10.1109/TIE.2020.3026286 – ident: ref55 doi: 10.1109/TIE.2017.2733465 – ident: ref23 doi: 10.1016/j.jfranklin.2020.03.027 – ident: ref1 doi: 10.1109/TSMC.2019.2945500 – ident: ref2 doi: 10.1109/TSMC.2019.2943882 – ident: ref19 doi: 10.1109/TAC.2022.3171389 – ident: ref27 doi: 10.1002/rnc.5468 – ident: ref36 doi: 10.1002/rnc.4961 – ident: ref13 doi: 10.1109/LCSYS.2022.3184275 – ident: ref16 doi: 10.1109/TIE.2020.3028806 – ident: ref41 doi: 10.1109/TII.2019.2931792 – ident: ref43 doi: 10.1016/j.dsp.2022.103595 – volume-title: System Identification-Iterative Search Principle and Identification Methods year: 2018 ident: ref8 – ident: ref38 doi: 10.1016/j.ymssp.2018.12.027 – ident: ref48 doi: 10.1109/TSMC.2019.2949087 – ident: ref53 doi: 10.1109/TPAMI.2013.216 – ident: ref29 doi: 10.1016/j.jfranklin.2018.01.052 – volume-title: System Identification-New Theory and Methods year: 2013 ident: ref12 – ident: ref49 doi: 10.1109/TSP.2018.2865434 – ident: ref15 doi: 10.1109/TAC.2020.3007569 – ident: ref31 doi: 10.1002/acs.3604 – ident: ref51 doi: 10.1016/j.sysconle.2006.10.026 – ident: ref4 doi: 10.1109/TPWRS.2021.3131639 – ident: ref24 doi: 10.1109/TCST.2021.3111107 – volume-title: Methods for Non-Linear Least Squares Problems year: 2004 ident: ref56 – volume-title: System Identification-Auxiliary Model Identification Idea and Methods year: 2017 ident: ref6 – ident: ref42 doi: 10.1002/acs.2752 – ident: ref14 doi: 10.1109/TAC.2021.3131433 – ident: ref35 doi: 10.1016/j.jfranklin.2021.04.006 – volume-title: System Identification-Multi-Innovation Identification Theory and Methods year: 2016 ident: ref7 – ident: ref52 doi: 10.1007/978-1-4612-0173-1 – ident: ref39 doi: 10.1109/LSP.2017.2720542 – ident: ref50 doi: 10.1109/TVT.2015.2396640 – ident: ref47 doi: 10.1109/tim.2022.3155778 – ident: ref32 doi: 10.1002/rnc.6657 – ident: ref40 doi: 10.1109/ICCCBDA.2018.8386559 – ident: ref22 doi: 10.1002/rnc.5675 – ident: ref54 doi: 10.1016/j.patrec.2015.02.011 – ident: ref37 doi: 10.1002/acs.3257 – ident: ref26 doi: 10.1109/TIE.2018.2826450 – ident: ref46 doi: 10.1109/TIM.2020.3009354 – ident: ref20 doi: 10.1109/TSP.2022.3180195 – ident: ref34 doi: 10.1016/j.mcm.2010.03.002 – ident: ref21 doi: 10.1109/TEC.2021.3093010 – ident: ref25 doi: 10.1109/TIM.2021.3132913 |
| SSID | ssj0007647 |
| Score | 2.5102692 |
| Snippet | In the existing identification algorithms, the output noise is usually modeled by using the thick-tailed Laplace and Student's t-distributions instead of the... In the existing identification algorithms, the output noise is usually modeled by using the thick-tailed Laplace and Student’s t-distributions instead of the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Computational modeling Data mining Generalized expectation maximization (GEM) algorithm Hammerstein output error (OE) system Identification Mathematical models Noise measurement Normal distribution Outliers (statistics) Parameter estimation Parameters Process variables robust parameter estimation Robustness Robustness (mathematics) skewed and asymmetric noise Statistical analysis System identification |
| Title | Probability-Based Identification of Hammerstein Systems With Asymmetric Noise Characteristics |
| URI | https://ieeexplore.ieee.org/document/10334470 https://www.proquest.com/docview/2904673923 |
| Volume | 73 |
| WOSCitedRecordID | wos001132683400180&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86FPTgx1ScTsnBi4dsadOu7XEOh4KOHSbuIqX5woGssnbC_ntf0mxsiIK3QpNQ8uv7TN7vIXQD-g-soIgI6D5GAhmHJNaKEh1IQXmWhbIiSXqKBoN4PE6Grljd1sIopezlM9Uyj_YsX-ZiblJlIOHMENRBhL4dRZ2qWGuldqNOUBFkeiDB4BYszyRp0h49PrdMm_AWY8wcVG3YINtU5Ycmtualf_jPDztCB86PxN0K-GO0paZ1tL_GLlhHu_Z2pyhO0NtwBmJrr8EuyB3YLYmrAl3tMnY419jlsE33S-x4zPHrpHzH3WIBbwyTPx7kk0Lh3ibJ8yl66d-Peg_E9VUgwk_8kiRUcvATfOlFgmchz1jMeQj7EjMdevCUSSUUVdTnQQccKAleo6cjqTzFwkSE7AzVpvlUnSNsoi1Yk6tAgjnkNIbwRCRUSI9prYOsgdrLnU6FIx03vS8-Uht80CQFbFKDTeqwaaDb1YzPinDjj7GnBou1cRUMDdRcopk6kSxSP6FgFMAdZBe_TLtEe7B6UCVYmqhWzubqCu2Ir3JSzK7t3_YNQnbR0A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH6IC-rBtWJd5-DFQ-okM2mSYy2KYi09VPQiIbNhQVppWqH_3jeTqSii4G0gmSTMl7fOvO8BnKH-QysokwB1Hwu4SuMgNZoGhitJRVHEqiJJ6iTdbvr0lPV8sbqrhdFau8NnumGHbi9fjeTUpspQwpklqMMIfSnmPKJVudan4k2avKLIDFGG0TGY70rS7KJ_e9-wjcIbjDG7VfXNCrm2Kj90sTMw15v__LQt2PCeJGlV0G_Dgh7uwPoXfsEdWHHnO2W5C8-9MQquOwg7Cy7RcilSlegan7MjI0N8Ftv2vySeyZw8DiYvpFXO8Irl8ifd0aDUpP2d5rkGD9dX_fZN4DsrBDLKokmQUSXQU4hUmEhRxKJgqRAxrkvKTBziqFBaaqppJHgTXSiFfmNoEqVDzeJMxmwPFoejod4HYuMtfKbQXKFBFDTFAEVmVKqQGWN4UYeL-Urn0tOO2-4Xr7kLP2iWIza5xSb32NTh_HPGW0W58ce9NYvFl_sqGOpwNEcz90JZ5lFG0SygQ8gOfpl2Cqs3_ftO3rnt3h3CGr6JV-mWI1icjKf6GJbl-2RQjk_cn_cBVUvVFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probability-Based+Identification+of+Hammerstein+Systems+With+Asymmetric+Noise+Characteristics&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Liu%2C+Xin&rft.au=Wang%2C+Chen&rft.au=Dai%2C+Wei&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2023.3336437&rft.externalDocID=10334470 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |