Low-Complexity Decision Feedback Equalization for Single-Carrier Massive MIMO Systems

Decision feedback equalization (DFE) has demonstrated its potential to achieve near-optimal performance in signal detection within single-carrier massive MIMO systems. However, matrix-inversion-based DFE schemes are not suitable for massive MIMO systems due to their prohibitively high computational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on vehicular technology Jg. 73; H. 11; S. 17316 - 17330
Hauptverfasser: Zhang, Xiaohui, Xing, Ling, Wu, Honghai, Ji, Baofeng, Zhang, Gaoyuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9545, 1939-9359
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Decision feedback equalization (DFE) has demonstrated its potential to achieve near-optimal performance in signal detection within single-carrier massive MIMO systems. However, matrix-inversion-based DFE schemes are not suitable for massive MIMO systems due to their prohibitively high computational complexity. In this paper, we investigate frequency domain DFE for signal detection in single-carrier massive MIMO systems with the goal of reducing computational complexity for practical applications. We propose a low-complexity implicit DFE scheme for single-carrier massive MIMO systems, which mitigates inter-stream and inter-symbol interference by leveraging the Neumann series (NS) expansion for matrix inversion approximation (MIA). The proposed scheme performs DFE implicitly by recursively computing forward/feedback signals using the NS expansion, thereby avoiding computationally intensive matrix inversions and forward/feedback filters calculation. Simulation and analysis results indicate that, compared to matrix-inversion-based DFE schemes, the proposed implicit DFE scheme can significantly reduce computational complexity while achieving similar performance in single-carrier massive MIMO systems. Moreover, it outperforms existing low-complexity detection methods under stringent channel conditions while maintaining similar or even lower complexity.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2024.3431672