A Spatial Learning-based Fault Tolerant Lateral Tracking Control for Autonomous Driving

In this paper, a spatial learning-based fault-tolerant control strategy is proposed for precise lateral tracking of autonomous vehicles subject to dynamical uncertainties, external disturbances as well as actuator failures. In order to facilitate the controller design, the uncertain vehicle dynamics...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on vehicular technology Ročník 72; číslo 10; s. 1 - 13
Hlavní autoři: Li, Xuefang, Li, Hongbo, Meng, Deyuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9545, 1939-9359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a spatial learning-based fault-tolerant control strategy is proposed for precise lateral tracking of autonomous vehicles subject to dynamical uncertainties, external disturbances as well as actuator failures. In order to facilitate the controller design, the uncertain vehicle dynamics are firstly transformed into a parametric form in the space domain, where the system uncertainties are reorganized and combined into the parametric and input distribution uncertainties. Furthermore, considering the under-actuated property of the vehicle dynamics, a novel technique in dealing with the non-square input distribution matrix is employed, in which a pseudo-like inverse matrix and a robust term are introduced into the controller to compensate the mismatch between the number of inputs and outputs. Then the proposed spatial learning-based fault tolerant control algorithm is developed, which is equipped with two adaptive parametric updating laws to estimate the parametric uncertainties and the multiplicative actuator faults correspondingly. Consequently, the convergence of the control algorithm is analyzed rigorously under the framework of composite energy function. Case studies verify the feasibility and effectiveness of the proposed control scheme.
AbstractList In this article, a spatial learning-based fault-tolerant control strategy is proposed for precise lateral tracking of autonomous vehicles subject to dynamical uncertainties, external disturbances as well as actuator failures. In order to facilitate the controller design, the uncertain vehicle dynamics are firstly transformed into a parametric form in the space domain, where the system uncertainties are reorganized and combined into the parametric and input distribution uncertainties. Furthermore, considering the under-actuated property of the vehicle dynamics, a novel technique in dealing with the non-square input distribution matrix is employed, in which a pseudo-like inverse matrix and a robust term are introduced into the controller to compensate the mismatch between the number of inputs and outputs. Then the proposed spatial learning-based fault tolerant control algorithm is developed, which is equipped with two adaptive parametric updating laws to estimate the parametric uncertainties and the multiplicative actuator faults correspondingly. Consequently, the convergence of the control algorithm is analyzed rigorously under the framework of composite energy function. Case studies verify the feasibility and effectiveness of the proposed control scheme.
In this paper, a spatial learning-based fault-tolerant control strategy is proposed for precise lateral tracking of autonomous vehicles subject to dynamical uncertainties, external disturbances as well as actuator failures. In order to facilitate the controller design, the uncertain vehicle dynamics are firstly transformed into a parametric form in the space domain, where the system uncertainties are reorganized and combined into the parametric and input distribution uncertainties. Furthermore, considering the under-actuated property of the vehicle dynamics, a novel technique in dealing with the non-square input distribution matrix is employed, in which a pseudo-like inverse matrix and a robust term are introduced into the controller to compensate the mismatch between the number of inputs and outputs. Then the proposed spatial learning-based fault tolerant control algorithm is developed, which is equipped with two adaptive parametric updating laws to estimate the parametric uncertainties and the multiplicative actuator faults correspondingly. Consequently, the convergence of the control algorithm is analyzed rigorously under the framework of composite energy function. Case studies verify the feasibility and effectiveness of the proposed control scheme.
Author Li, Hongbo
Li, Xuefang
Meng, Deyuan
Author_xml – sequence: 1
  givenname: Xuefang
  orcidid: 0000-0003-3898-6509
  surname: Li
  fullname: Li, Xuefang
  organization: School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou, China
– sequence: 2
  givenname: Hongbo
  surname: Li
  fullname: Li, Hongbo
  organization: School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou, China
– sequence: 3
  givenname: Deyuan
  orcidid: 0000-0002-0990-0166
  surname: Meng
  fullname: Meng, Deyuan
  organization: Seventh Research Division, Beihang University (BUAA), Beijing, China
BookMark eNp9kDFPwzAQhS1UJNrCzsBgiTnFdpzEHqtCASkSAwFG65I4KCW1i-0g8e9x1Q6IgenudO_d6X0zNDHWaIQuKVlQSuRN9VotGGHpImUFzwt2gqZUpjKRaSYnaEoIFYnMeHaGZt5v4si5pFP0tsTPOwg9DLjU4Exv3pMavG7xGsYh4MoO2oEJuIQQmwFXDpqPqMIra4KzA-6sw8sxWGO3dvT41vVfcX2OTjsYvL441jl6Wd9Vq4ekfLp_XC3LpGGShUS0QoiW1pC1eQdZXUCcRK6h4w0jtYCWtZzyQsqaN1rzgrWCS8lkDV0dU6ZzdH24u3P2c9Q-qI0dnYkvFROFyAhjeRpV5KBqnPXe6U7tXL8F960oUXt8KuJTe3zqiC9a8j-Wpg8R1D419MN_xquDsdda__pDWQyWpz-xgX9y
CODEN ITVTAB
CitedBy_id crossref_primary_10_1016_j_jfranklin_2025_107937
crossref_primary_10_1007_s11071_025_11320_y
crossref_primary_10_1109_OJITS_2025_3583787
crossref_primary_10_1177_09544070251325911
crossref_primary_10_1109_JIOT_2025_3546962
Cites_doi 10.1109/TITS.2003.811644
10.1016/j.conengprac.2020.104654
10.1109/TCST.2007.894653
10.1016/j.automatica.2021.110024
10.1002/rnc.3601
10.1016/j.conengprac.2018.04.007
10.1109/TITS.2015.2486815
10.1016/j.automatica.2014.05.002
10.1016/j.automatica.2018.04.011
10.1109/TCST.2020.2971957
10.1109/TIV.2016.2578706
10.1109/TCST.2020.3024586
10.1007/s12239-020-0094-8
10.1002/rnc.3333
10.1007/978-1-4612-0571-5_4
10.1109/ACC.2016.7526680
10.1109/TRA.2003.819598
10.1109/TIE.2017.2739680
10.1109/TCST.2013.2245667
10.1109/TCST.2020.3006123
10.1109/MCI.2019.2901089
10.1109/DDCLS52934.2021.9455606
10.1109/TVT.2020.3014628
10.1109/TCST.2002.804120
10.1109/TCST.2014.2338354
10.1109/ACC.2015.7171151
10.1109/TNNLS.2021.3136644
10.1109/CDC42340.2020.9304347
10.1109/TCST.2020.3028219
10.1016/j.conengprac.2018.02.002
10.1016/j.jfranklin.2019.08.012
10.1007/s10846-016-0442-0
10.1109/TCST.2021.3089885
10.1016/j.ifacol.2017.08.049
10.1049/iet-its.2019.0411
10.1109/TITS.2015.2435016
10.1109/TCST.2021.3049958
10.1109/TSMC.2017.2712561
10.1109/TFUZZ.2017.2698370
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2023.3274672
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 13
ExternalDocumentID 10_1109_TVT_2023_3274672
10121866
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: 62003376; 62273018
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2022A1515010881
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
VH1
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-8d888d1ba5d6fa5b7a8d186eaf4c20b8ad2d414799b4cee472d849929bafb6723
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001098049700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 08:16:47 EDT 2025
Tue Nov 18 22:32:10 EST 2025
Sat Nov 29 02:59:08 EST 2025
Wed Aug 27 02:18:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-8d888d1ba5d6fa5b7a8d186eaf4c20b8ad2d414799b4cee472d849929bafb6723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0990-0166
0000-0003-3898-6509
PQID 2878502263
PQPubID 85454
PageCount 13
ParticipantIDs crossref_primary_10_1109_TVT_2023_3274672
ieee_primary_10121866
proquest_journals_2878502263
crossref_citationtrail_10_1109_TVT_2023_3274672
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
bartle (ref43) 2000; 2
ref14
ref31
ref30
bartle (ref40) 2014
ref11
ref33
ref10
ref32
xu (ref26) 2003; 291
ref2
ref1
ref17
ref39
jiang (ref7) 1997; 33
ref16
ref38
ref19
ref18
rajamani (ref36) 2011
ref24
ref23
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref19
  doi: 10.1109/TITS.2003.811644
– ident: ref12
  doi: 10.1016/j.conengprac.2020.104654
– ident: ref13
  doi: 10.1109/TCST.2007.894653
– ident: ref39
  doi: 10.1016/j.automatica.2021.110024
– volume: 291
  year: 2003
  ident: ref26
  publication-title: Linear and Nonlinear Iterative Learning Control
– volume: 2
  year: 2000
  ident: ref43
  publication-title: Introduction to Real Analysis
– ident: ref16
  doi: 10.1002/rnc.3601
– ident: ref37
  doi: 10.1016/j.conengprac.2018.04.007
– ident: ref2
  doi: 10.1109/TITS.2015.2486815
– ident: ref32
  doi: 10.1016/j.automatica.2014.05.002
– ident: ref10
  doi: 10.1016/j.automatica.2018.04.011
– ident: ref27
  doi: 10.1109/TCST.2020.2971957
– ident: ref6
  doi: 10.1109/TIV.2016.2578706
– ident: ref1
  doi: 10.1109/TCST.2020.3024586
– ident: ref44
  doi: 10.1007/s12239-020-0094-8
– ident: ref41
  doi: 10.1002/rnc.3333
– ident: ref25
  doi: 10.1007/978-1-4612-0571-5_4
– ident: ref11
  doi: 10.1109/ACC.2016.7526680
– ident: ref9
  doi: 10.1109/TRA.2003.819598
– ident: ref20
  doi: 10.1109/TIE.2017.2739680
– ident: ref30
  doi: 10.1109/TCST.2013.2245667
– ident: ref15
  doi: 10.1109/TCST.2020.3006123
– volume: 33
  start-page: 1393
  year: 1997
  ident: ref7
  article-title: Tracking control of mobile robots: A case study in backstepping
  publication-title: Automatica
– ident: ref24
  doi: 10.1109/MCI.2019.2901089
– ident: ref34
  doi: 10.1109/DDCLS52934.2021.9455606
– ident: ref23
  doi: 10.1109/TVT.2020.3014628
– ident: ref8
  doi: 10.1109/TCST.2002.804120
– ident: ref4
  doi: 10.1109/TCST.2014.2338354
– ident: ref33
  doi: 10.1109/ACC.2015.7171151
– ident: ref35
  doi: 10.1109/TNNLS.2021.3136644
– ident: ref21
  doi: 10.1109/CDC42340.2020.9304347
– ident: ref29
  doi: 10.1109/TCST.2020.3028219
– ident: ref18
  doi: 10.1016/j.conengprac.2018.02.002
– ident: ref42
  doi: 10.1016/j.jfranklin.2019.08.012
– ident: ref5
  doi: 10.1007/s10846-016-0442-0
– ident: ref28
  doi: 10.1109/TCST.2021.3089885
– ident: ref14
  doi: 10.1016/j.ifacol.2017.08.049
– ident: ref31
  doi: 10.1049/iet-its.2019.0411
– ident: ref3
  doi: 10.1109/TITS.2015.2435016
– ident: ref38
  doi: 10.1109/TCST.2021.3049958
– ident: ref22
  doi: 10.1109/TSMC.2017.2712561
– year: 2014
  ident: ref40
  publication-title: The Elements of Integration and Lebesgue Measure
– year: 2011
  ident: ref36
  publication-title: Vehicle Dynamics and Control
– ident: ref17
  doi: 10.1109/TFUZZ.2017.2698370
SSID ssj0014491
Score 2.4576497
Snippet In this paper, a spatial learning-based fault-tolerant control strategy is proposed for precise lateral tracking of autonomous vehicles subject to dynamical...
In this article, a spatial learning-based fault-tolerant control strategy is proposed for precise lateral tracking of autonomous vehicles subject to dynamical...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Actuator failure
Actuators
Adaptation models
Adaptive control
Algorithms
Autonomous vehicles
Control algorithms
Control systems design
Control theory
Controllers
Convergence
Fault tolerance
fault tolerant
Feasibility studies
lateral tracking
Space vehicles
Spatial adaptive iterative learning control
Tracking control
Uncertainty
Vehicle dynamics
Title A Spatial Learning-based Fault Tolerant Lateral Tracking Control for Autonomous Driving
URI https://ieeexplore.ieee.org/document/10121866
https://www.proquest.com/docview/2878502263
Volume 72
WOSCitedRecordID wos001098049700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFG508aAHf844naYHLx7YoJRSjst08bAsHnDuRlpazJJlmA38-30P2DJjNPEGpCXkfS3vvbbv-wi51yIUWnPfyXytHC4Vd5SnIph4HODWLJAVpdB0HE4mcjaLXppi9aoWxlpbHT6zPbys9vJNnpa4VNZHLiokaNsn-2Eo6mKt7ZYB5408ngczGOKCzZ6kG_XjadxDmfCez1Bdg33zQZWoyo8_ceVeRif__LBTctzEkXRQA39G9uzynBztsAtekLcBRcFhGGC0YVF9d9BpGTpS5aKgcb6w4KkKOlZYhryg4LdSXDmnw_r8OoWAlg7KAuse8nJNH1dzXH5ok9fRUzx8dhodBSdlESscaSDNNZ5WgRGZCnSo4E4KqzKeMldLZZjhHg-jSHPwmTxkRkIixCKtMsCS-ZektcyX9opQqY2bwiNmheJexnUmhVHGtSkT6Oo7pL-xbJI2JOOodbFIqmTDjRLAIkEskgaLDnnY9vioCTb-aNtG2--0q83eId0NekkzBdcJpIIygAhF-Ne_dLshh_j2-mhel7SKVWlvyUH6WczXq7tqdH0Bza3MhQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ74StSDb-P67MGLB3ahFCjHjbrRuG484ONGWlrMJptdswv-fmeANRqjiTcgbSDztcxM2_k-gHMdRqHWwndyXytHSCUc5akYJ55AuDUPZEUp9NSPBgP58hI_NMXqVS2MtbY6fGbbdFnt5ZtJVtJSWYe4qIigbRGWAyG4W5drfW4aCNEI5Hk4hzEymO9KunEneUraJBTe9jnpa_BvXqiSVfnxL64cTG_zn5-2BRtNJMm6NfTbsGDHO7D-hV9wF567jCSHcYixhkf11SG3ZVhPlaOCJZORRV9VsL6iQuQRQ8-V0do5u6xPsDMMaVm3LKjyYVLO2NV0SAsQe_DYu04ub5xGScHJeMwLRxpMdI2nVWDCXAU6UngnQ6tykXFXS2W4EZ6I4lgL9Joi4kZiKsRjrXJEk_v7sDSejO0BMKmNm-EjbkMlvFzoXIZGGddmPCRn34LO3LJp1tCMk9rFKK3SDTdOEYuUsEgbLFpw8dnjrabY-KPtHtn-S7va7C04nqOXNpNwlmIyKAOMUUL_8JduZ7B6k9z30_7t4O4I1uhN9UG9Y1gqpqU9gZXsvRjOpqfVSPsAmtTPzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spatial+Learning-based+Fault+Tolerant+Lateral+Tracking+Control+for+Autonomous+Driving&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Li%2C+Xuefang&rft.au=Li%2C+Hongbo&rft.au=Meng%2C+Deyuan&rft.date=2023-10-01&rft.pub=IEEE&rft.issn=0018-9545&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTVT.2023.3274672&rft.externalDocID=10121866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon