3D Lane Detection With Attention in Attention

Lane detection is a critical component of autonomous driving systems and has been the subject of extensive research. Unlike object detection, identifying car lanes requires extracting features from multi-scale information since they are slender, sparse, and distributed in the entire image. Unfortuna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters Jg. 31; S. 1104 - 1108
Hauptverfasser: Gu, Yinchao, Ma, Chao, Li, Qian, Yang, Xiaokang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1070-9908, 1558-2361
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Lane detection is a critical component of autonomous driving systems and has been the subject of extensive research. Unlike object detection, identifying car lanes requires extracting features from multi-scale information since they are slender, sparse, and distributed in the entire image. Unfortunately, many previous works have overlooked this requirement, resulting in less robust lane feature extraction. To address this issue, we propose an attention mechanism that is exceptional at extracting global and long-dependence lane features compared to CNNs. Our attention-based structure, called attention in attention , explores the relationship between various correlations and mitigates mismatched correlation problems in attention computation. Furthermore, we introduce a novel feature fusion structure in the backbone called the double feature pyramid network, which effectively gathers feature information with various dimensions and enlarges the receptive field. Our network is based on the BEV-LaneDet and achieves impressive performance on the OpenLane dataset. Notably, experiments demonstrate that our method surpasses BEV-LaneDet by 4.4% in terms of F-Score on OpenLane.
AbstractList Lane detection is a critical component of autonomous driving systems and has been the subject of extensive research. Unlike object detection, identifying car lanes requires extracting features from multi-scale information since they are slender, sparse, and distributed in the entire image. Unfortunately, many previous works have overlooked this requirement, resulting in less robust lane feature extraction. To address this issue, we propose an attention mechanism that is exceptional at extracting global and long-dependence lane features compared to CNNs. Our attention-based structure, called attention in attention , explores the relationship between various correlations and mitigates mismatched correlation problems in attention computation. Furthermore, we introduce a novel feature fusion structure in the backbone called the double feature pyramid network, which effectively gathers feature information with various dimensions and enlarges the receptive field. Our network is based on the BEV-LaneDet and achieves impressive performance on the OpenLane dataset. Notably, experiments demonstrate that our method surpasses BEV-LaneDet by 4.4% in terms of F-Score on OpenLane.
Author Li, Qian
Yang, Xiaokang
Gu, Yinchao
Ma, Chao
Author_xml – sequence: 1
  givenname: Yinchao
  orcidid: 0009-0005-1345-169X
  surname: Gu
  fullname: Gu, Yinchao
  email: gyc200825@sjtu.edu.cn
  organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiaotong University, Shanghai, China
– sequence: 2
  givenname: Chao
  orcidid: 0000-0002-8459-2845
  surname: Ma
  fullname: Ma, Chao
  email: chaoma@sjtu.edu.cn
  organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiaotong University, Shanghai, China
– sequence: 3
  givenname: Qian
  orcidid: 0000-0002-3642-7909
  surname: Li
  fullname: Li, Qian
  email: nk0307@sjtu.edu.cn
  organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiaotong University, Shanghai, China
– sequence: 4
  givenname: Xiaokang
  orcidid: 0000-0003-4029-3322
  surname: Yang
  fullname: Yang, Xiaokang
  email: xkyang@sjtu.edu.cn
  organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiaotong University, Shanghai, China
BookMark eNp9kM1LAzEQxYNUsK3ePXhY8Lx1kmx2k2Np_YIFBRWPIZsPTKnZmk0P_vemtqB4EAZmHrzfzPAmaBT6YBE6xzDDGMRV-_Q4I0CqGaWcUVodoTFmjJeE1niUZ2igFAL4CZoMwwoAOOZsjEq6LFoVbLG0yerk-1C8-vRWzFOy4Vv68CNO0bFT68GeHfoUvdxcPy_uyvbh9n4xb0tNBEkl17ThDgR0jLmGUmo7ZTjRHTbKGIcNVhxr0zWCEQ0MRH7MCCdqwbCpnaBTdLnfu4n9x9YOSa76bQz5pKRQYUZIxXh21XuXjv0wROuk9knt_kxR-bXEIHfRyByN3EUjD9FkEP6Am-jfVfz8D7nYI95a-8vOIBenX1FCbrA
CODEN ISPLEM
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3583341
Cites_doi 10.1109/CVPR.2017.106
10.1007/978-3-031-19839-7_32
10.1109/ICRA48891.2023.10161160
10.1609/aaai.v32i1.12301
10.48550/ARXIV.1706.03762
10.1109/CVPR.2016.90
10.1007/978-3-030-58589-1_40
10.1007/978-3-031-20047-2_9
10.1007/978-3-030-58586-0_17
10.1109/ICCV51070.2023.00730
10.1007/978-3-031-20077-9_1
10.1109/ICCV.2019.00301
10.1109/LRA.2020.3004325
10.1109/CVPR52729.2023.00103
10.1109/TITS.2019.2890870
10.1609/aaai.v35i4.16469
10.1109/CVPR46437.2021.00036
10.1109/LSP.2006.879465
10.1007/978-3-030-58452-8_13
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2024.3385334
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 1108
ExternalDocumentID 10_1109_LSP_2024_3385334
10500508
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; NSFC
  grantid: 62322113; 62376156
  funderid: 10.13039/501100001809
– fundername: Shanghai Municipal Science and Technology Major
  grantid: 2021SHZDZX0102
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-8c378f090b55f7333ebad82cb1daddf1d1a81cdb7952c0509990d9f96951d6f93
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001205778700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Mon Jun 30 03:03:49 EDT 2025
Sat Nov 29 03:38:55 EST 2025
Tue Nov 18 22:23:56 EST 2025
Wed Aug 27 02:22:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-8c378f090b55f7333ebad82cb1daddf1d1a81cdb7952c0509990d9f96951d6f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8459-2845
0009-0005-1345-169X
0000-0002-3642-7909
0000-0003-4029-3322
PQID 3041522458
PQPubID 75747
PageCount 5
ParticipantIDs ieee_primary_10500508
crossref_citationtrail_10_1109_LSP_2024_3385334
crossref_primary_10_1109_LSP_2024_3385334
proquest_journals_3041522458
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
Huang (ref22)
ref11
ref10
ref21
ref2
ref1
ref17
ref18
ref8
Dosovitskiy (ref16) 2021
ref7
ref9
ref4
ref3
ref6
ref5
Tan (ref19) 2019
References_xml – ident: ref14
  doi: 10.1109/CVPR.2017.106
– start-page: 6105
  volume-title: Proc. Intern. Conf. Mach. Learn.
  year: 2019
  ident: ref19
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– ident: ref8
  doi: 10.1007/978-3-031-19839-7_32
– ident: ref7
  doi: 10.1109/ICRA48891.2023.10161160
– ident: ref2
  doi: 10.1609/aaai.v32i1.12301
– ident: ref13
  doi: 10.48550/ARXIV.1706.03762
– ident: ref18
  doi: 10.1109/CVPR.2016.90
– ident: ref10
  doi: 10.1007/978-3-030-58589-1_40
– ident: ref15
  doi: 10.1007/978-3-031-20047-2_9
– ident: ref3
  doi: 10.1007/978-3-030-58586-0_17
– ident: ref12
  doi: 10.1109/ICCV51070.2023.00730
– start-page: 2021
  ident: ref22
  article-title: BEVDet: High-performance multi-camera 3D object detection in bird-eye-view
– ident: ref21
  doi: 10.1007/978-3-031-20077-9_1
– ident: ref9
  doi: 10.1109/ICCV.2019.00301
– ident: ref20
  doi: 10.1109/LRA.2020.3004325
– ident: ref11
  doi: 10.1109/CVPR52729.2023.00103
– ident: ref1
  doi: 10.1109/TITS.2019.2890870
– ident: ref5
  doi: 10.1609/aaai.v35i4.16469
– ident: ref4
  doi: 10.1109/CVPR46437.2021.00036
– ident: ref6
  doi: 10.1109/LSP.2006.879465
– volume-title: Proc. Inter. Conf. Learn. Repr.
  year: 2021
  ident: ref16
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– ident: ref17
  doi: 10.1007/978-3-030-58452-8_13
SSID ssj0008185
Score 2.4374833
Snippet Lane detection is a critical component of autonomous driving systems and has been the subject of extensive research. Unlike object detection, identifying car...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1104
SubjectTerms 3D Lane detection
attention in attention
attention mechanism
Cameras
Correlation
Critical components
Data mining
Feature extraction
feature fusion
Lane detection
Object recognition
Three-dimensional displays
Transformers
Title 3D Lane Detection With Attention in Attention
URI https://ieeexplore.ieee.org/document/10500508
https://www.proquest.com/docview/3041522458
Volume 31
WOSCitedRecordID wos001205778700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8R4kEPfmJE0ezgxcOgXTfaHolIPBBC4he3pV-LJGYQGP79tt1AjNHE25a0y_Jr-7763u8B3HCNJcHCxb-4Cu2mUKHgSlqvlROJTZwoX_X-MqSjEZtM-LgqVve1MMYYn3xm2u7R3-XrmVq5UJk94YnjK2E1qFFKy2Ktjdh1mqdMMEShFbFsfSeJeGf4OLaeYBS3rT_mSk-_6SDfVOWHJPbqZXD4zx87goPKjgx65cIfw47JT2B_i13wFELSD4YiN0HfFD7hKg9ep8Vb0CuKMscxmOZfLw14Htw_3T2EVXeEUEU8KkKmCGUZ4kgmSUYJIUYKzSIlsbYyK8MaC4aVlpQnkXIsLxYUzTPetTaV7macnEE9n-XmHAKEZISEtb0i6zyJRAiDVIaEyuJYGo1NEzprvFJVUYe7DhbvqXchEE8twqlDOK0QbsLtZsa8pM34Y2zDIbo1rgSzCa31mqTVwVqmxFEKWLMjYRe_TLuEPff1MkzSgnqxWJkr2FUfxXS5uPZ75hOhNLwZ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFNSDnxOnU3vw4qFb0rRrcxzOMbGOgVN3K_kqDqSTrfPvN0m7OREFby0ktPySvK-893sAV1RiTjAz8S8qXL0phMuo4NprpYRj5QfCVr0_x2G_H41GdFAWq9taGKWUTT5TDfNo7_LlRMxNqEyf8MDwlUTrsBH4voeLcq2l4DW6p0gxRK4WstHiVhLRZvw40L6g5ze0R2aKT79pIdtW5Ycstgqmu_fPX9uH3dKSdNrF0h_AmsoOYWeFX_AIXNJxYpYpp6Nym3KVOS_j_NVp53mR5eiMs6-XKjx1b4c3Pbfsj-AKj3q5GwkSRimiiAdBGhJCFGcy8gTHUkutFEvMIiwkD2ngCcPzokGRNKUtbVXJVkrJMVSySaZOwEGIe4hp68vT7hMLGFNIpIiJ1Pe5kljVoLnAKxElebjpYfGWWCcC0UQjnBiEkxLhGlwvZ7wXxBl_jK0aRFfGFWDWoL5Yk6Q8WrOEGFIBbXgE0ekv0y5hqzd8iJP4rn9_BtvmS0XQpA6VfDpX57ApPvLxbHph988nmhC_YA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Lane+Detection+With+Attention+in+Attention&rft.jtitle=IEEE+signal+processing+letters&rft.au=Gu%2C+Yinchao&rft.au=Ma%2C+Chao&rft.au=Li%2C+Qian&rft.au=Yang%2C+Xiaokang&rft.date=2024&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=31&rft.spage=1104&rft.epage=1108&rft_id=info:doi/10.1109%2FLSP.2024.3385334&rft.externalDocID=10500508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon