Collaborative Task Offloading Optimization for Satellite Mobile Edge Computing Using Multi-Agent Deep Reinforcement Learning

Satellite mobile edge computing (SMEC) achieves efficient processing for space missions by deploying computing servers on low Earth orbit (LEO) satellites, which supplements a strong computing service for future satellite-terrestrial integrated networks. However, considering the spatio-temporal cons...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on vehicular technology Ročník 73; číslo 10; s. 15483 - 15498
Hlavní autori: Zhang, Hangyu, Zhao, Hongbo, Liu, Rongke, Kaushik, Aryan, Gao, Xiangqiang, Xu, Shenzhan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9545, 1939-9359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Satellite mobile edge computing (SMEC) achieves efficient processing for space missions by deploying computing servers on low Earth orbit (LEO) satellites, which supplements a strong computing service for future satellite-terrestrial integrated networks. However, considering the spatio-temporal constraints on large-scale LEO networks, inter-satellite cooperative computing is still challenging. In this paper, a multi-agent collaborative task offloading scheme for distributed SMEC is proposed. Facing the time-varying available satellites and service requirements, each autonomous satellite agent dynamically adjusts offloading decisions and resource allocations based on local observations. Furthermore, for evaluating the behavioral contribution of an agent to task completion, we adopt a deep reinforcement learning algorithm based on counterfactual multi-agent policy gradients (COMA) to optimize the strategy, which enables energy-efficient decisions satisfying the time and resource restrictions of SMEC. An actor-critic (AC) framework is effectively exploited to separately implement centralized training and distributed execution (CTDE) of the algorithm. We also redesign the actor structure by introducing an attention-based bidirectional long short-term memory network (Atten-BiLSTM) to explore the temporal characteristics of LEO networks. The simulation results show that the proposed scheme can effectively enable satellite autonomous collaborative computing in the distributed SMEC environment, and outperforms the benchmark algorithms.
AbstractList Satellite mobile edge computing (SMEC) achieves efficient processing for space missions by deploying computing servers on low Earth orbit (LEO) satellites, which supplements a strong computing service for future satellite-terrestrial integrated networks. However, considering the spatio-temporal constraints on large-scale LEO networks, inter-satellite cooperative computing is still challenging. In this paper, a multi-agent collaborative task offloading scheme for distributed SMEC is proposed. Facing the time-varying available satellites and service requirements, each autonomous satellite agent dynamically adjusts offloading decisions and resource allocations based on local observations. Furthermore, for evaluating the behavioral contribution of an agent to task completion, we adopt a deep reinforcement learning algorithm based on counterfactual multi-agent policy gradients (COMA) to optimize the strategy, which enables energy-efficient decisions satisfying the time and resource restrictions of SMEC. An actor-critic (AC) framework is effectively exploited to separately implement centralized training and distributed execution (CTDE) of the algorithm. We also redesign the actor structure by introducing an attention-based bidirectional long short-term memory network (Atten-BiLSTM) to explore the temporal characteristics of LEO networks. The simulation results show that the proposed scheme can effectively enable satellite autonomous collaborative computing in the distributed SMEC environment, and outperforms the benchmark algorithms.
Author Zhao, Hongbo
Zhang, Hangyu
Kaushik, Aryan
Xu, Shenzhan
Gao, Xiangqiang
Liu, Rongke
Author_xml – sequence: 1
  givenname: Hangyu
  orcidid: 0000-0001-5544-0124
  surname: Zhang
  fullname: Zhang, Hangyu
  email: zhanghangyu@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Hongbo
  orcidid: 0000-0002-1196-4089
  surname: Zhao
  fullname: Zhao, Hongbo
  email: bhzhb@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Rongke
  orcidid: 0000-0003-3098-8649
  surname: Liu
  fullname: Liu, Rongke
  email: rongke_liu@buaa.edu.cn
  organization: Shenzhen Institute, Beihang University, Shenzhen, China
– sequence: 4
  givenname: Aryan
  orcidid: 0000-0001-6252-4641
  surname: Kaushik
  fullname: Kaushik, Aryan
  email: aryan.kaushik@sussex.ac.uk
  organization: School of Engineering and Informatics, University of Sussex, Brighton, U.K
– sequence: 5
  givenname: Xiangqiang
  orcidid: 0000-0002-2289-6229
  surname: Gao
  fullname: Gao, Xiangqiang
  email: xggao@buaa.edu.cn
  organization: China Academy of Space Technology (Xi'an), Xi'an, China
– sequence: 6
  givenname: Shenzhan
  surname: Xu
  fullname: Xu, Shenzhan
  email: splayxu@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
BookMark eNp9kM9r2zAYhsVIYUnbew89CHZ2ql-OrWPIsraQEljTXs0n-XNQq1ierAw2-sfXXnoYO-wioU_v873wzMikDS0ScsXZnHOmb3bPu7lgQs2lYvlCiU9kyrXUmZa5npApY7zMdK7yz2TW9y_DUynNp-RtFbwHEyIk9xPpDvpXum0aH6B27Z5uu-QO7vfwGVrahEgfIaH3LiF9CMZ5pOt6j3QVDt0xjcBTP54PR59cttxjm-hXxI5-R9cOuMXDONogxHbIXZCzBnyPlx_3OXn6tt6t7rLN9vZ-tdxkVmiRstIKLAul80aXZYELgyCKWqnGWAmFERagLkHWtWFgJACrLUMlBVpjapujPCdfTnu7GH4csU_VSzjGdqisJOcFl7zMyyHFTikbQ99HbKouugPEXxVn1ei4GhxXo-Pqw_GALP5BrEt_ZKUIzv8PvD6BDhH_6sn1gikp3wEO_47S
CODEN ITVTAB
CitedBy_id crossref_primary_10_1007_s11227_024_06744_z
crossref_primary_10_1038_s41598_025_93731_w
crossref_primary_10_1016_j_eswa_2025_129702
crossref_primary_10_1109_TVT_2025_3526213
crossref_primary_10_3390_machines13060503
crossref_primary_10_1007_s10462_025_11340_5
crossref_primary_10_1109_JIOT_2025_3559984
crossref_primary_10_1007_s44443_025_00160_w
crossref_primary_10_1109_JIOT_2025_3575158
crossref_primary_10_1109_JIOT_2025_3578620
crossref_primary_10_1109_TMC_2025_3539945
crossref_primary_10_1109_LWC_2025_3542085
crossref_primary_10_1016_j_adhoc_2025_103987
crossref_primary_10_3390_electronics14051016
crossref_primary_10_3390_app15084127
crossref_primary_10_1109_JIOT_2025_3584469
crossref_primary_10_3390_math13071183
crossref_primary_10_1016_j_iot_2025_101603
Cites_doi 10.1109/LCOMM.2015.2509993
10.1109/TSC.2022.3190562
10.1109/6GNet54646.2022.9830496
10.1007/s12652-020-02761-x
10.1109/MNET.105.2100614
10.1109/TGCN.2022.3186792
10.1109/MCOM.2019.1800155
10.1109/TNSM.2022.3141165
10.1137/s0363012901385691
10.1109/TWC.2023.3235997
10.1109/TMC.2022.3141080
10.21437/Interspeech.2014-80
10.1109/JIOT.2022.3233383
10.1109/TWC.2021.3100247
10.1109/TCOMM.2023.3296584
10.1109/JIOT.2021.3056569
10.1109/JIOT.2021.3063509
10.1155/2022/4193365
10.1109/MNET.011.1900369
10.1109/LCOMM.2021.3095227
10.1109/ISPDS51347.2020.00019
10.1609/aaai.v32i1.11794
10.1109/TNSE.2022.3159796
10.1109/JIOT.2021.3085129
10.1109/COMST.2022.3160697
10.1109/MWC.2019.1800299
10.1109/TWC.2021.3080578
10.3390/s20226442
10.1002/sys.21428
10.1145/3452296.3472932
10.1109/TAES.2021.3090914
10.1109/MNET.2018.1800052
10.1109/MCOM.2015.7060481
10.1109/ICCC55456.2022.9880821
10.1109/TVT.2022.3224765
10.1109/tnse.2022.3141728
10.1109/GLOBECOM38437.2019.9013467
10.3390/aerospace9050234
10.1109/TWC.2021.3050335
10.1109/MSP.2017.2743240
10.1109/TWC.2017.2647805
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2024.3405642
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 15498
ExternalDocumentID 10_1109_TVT_2024_3405642
10596043
Genre orig-research
GrantInformation_xml – fundername: Shenzhen Fundamental Research Project
  grantid: JCYJ20220818103413029
– fundername: Shenzhen Science and Technology R&D Funds
  grantid: JSGG20220831100602005
– fundername: Beijing Natural Science Foundation
  grantid: L202003
  funderid: 10.13039/501100004826
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-8c2e87495f9887e6bea27d44fbc3a7b2caad8a3ddb0ab3aa0dc0e432ecbbdc5e3
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001336949600106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:16:36 EDT 2025
Sat Nov 29 02:59:16 EST 2025
Tue Nov 18 22:27:42 EST 2025
Wed Aug 27 01:57:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-8c2e87495f9887e6bea27d44fbc3a7b2caad8a3ddb0ab3aa0dc0e432ecbbdc5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3098-8649
0000-0002-2289-6229
0000-0001-6252-4641
0000-0002-1196-4089
0000-0001-5544-0124
PQID 3117131858
PQPubID 85454
PageCount 16
ParticipantIDs proquest_journals_3117131858
crossref_primary_10_1109_TVT_2024_3405642
crossref_citationtrail_10_1109_TVT_2024_3405642
ieee_primary_10596043
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
Sutton (ref41) 1999
ref42
Yoon (ref12) 2017
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – year: 2017
  ident: ref12
  article-title: Pointing system performance analysis for optical inter-satellite communication on cubesats
– ident: ref17
  doi: 10.1109/LCOMM.2015.2509993
– ident: ref28
  doi: 10.1109/TSC.2022.3190562
– ident: ref37
  doi: 10.1109/6GNet54646.2022.9830496
– ident: ref39
  doi: 10.1007/s12652-020-02761-x
– ident: ref21
  doi: 10.1109/MNET.105.2100614
– ident: ref29
  doi: 10.1109/TGCN.2022.3186792
– ident: ref32
  doi: 10.1109/MCOM.2019.1800155
– ident: ref6
  doi: 10.1109/TNSM.2022.3141165
– ident: ref42
  doi: 10.1137/s0363012901385691
– ident: ref26
  doi: 10.1109/TWC.2023.3235997
– ident: ref27
  doi: 10.1109/TMC.2022.3141080
– ident: ref40
  doi: 10.21437/Interspeech.2014-80
– start-page: 1057
  volume-title: Proc. 12th Int. Conf. Neural Inf. Process. Syst.
  year: 1999
  ident: ref41
  article-title: Policy gradient methods for reinforcement learning with function approximation
– ident: ref16
  doi: 10.1109/JIOT.2022.3233383
– ident: ref20
  doi: 10.1109/TWC.2021.3100247
– ident: ref22
  doi: 10.1109/TCOMM.2023.3296584
– ident: ref36
  doi: 10.1109/JIOT.2021.3056569
– ident: ref24
  doi: 10.1109/JIOT.2021.3063509
– ident: ref30
  doi: 10.1155/2022/4193365
– ident: ref1
  doi: 10.1109/MNET.011.1900369
– ident: ref34
  doi: 10.1109/LCOMM.2021.3095227
– ident: ref10
  doi: 10.1109/ISPDS51347.2020.00019
– ident: ref33
  doi: 10.1609/aaai.v32i1.11794
– ident: ref7
  doi: 10.1109/TNSE.2022.3159796
– ident: ref8
  doi: 10.1109/JIOT.2021.3085129
– ident: ref38
  doi: 10.1109/COMST.2022.3160697
– ident: ref35
  doi: 10.1109/MWC.2019.1800299
– ident: ref9
  doi: 10.1109/TWC.2021.3080578
– ident: ref3
  doi: 10.3390/s20226442
– ident: ref19
  doi: 10.1002/sys.21428
– ident: ref4
  doi: 10.1145/3452296.3472932
– ident: ref11
  doi: 10.1109/TAES.2021.3090914
– ident: ref18
  doi: 10.1109/MNET.2018.1800052
– ident: ref2
  doi: 10.1109/MCOM.2015.7060481
– ident: ref15
  doi: 10.1109/ICCC55456.2022.9880821
– ident: ref23
  doi: 10.1109/TVT.2022.3224765
– ident: ref5
  doi: 10.1109/tnse.2022.3141728
– ident: ref14
  doi: 10.1109/GLOBECOM38437.2019.9013467
– ident: ref31
  doi: 10.3390/aerospace9050234
– ident: ref13
  doi: 10.1109/TWC.2021.3050335
– ident: ref25
  doi: 10.1109/MSP.2017.2743240
– ident: ref43
  doi: 10.1109/TWC.2017.2647805
SSID ssj0014491
Score 2.5563464
Snippet Satellite mobile edge computing (SMEC) achieves efficient processing for space missions by deploying computing servers on low Earth orbit (LEO) satellites,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15483
SubjectTerms Algorithms
Collaboration
Computation offloading
Computational modeling
Cooperative systems
Decisions
Deep learning
Deep reinforcement learning
distributed cooperative computing
Edge computing
Low earth orbit satellites
Low earth orbits
Machine learning
Mobile computing
Multi-access edge computing
multi-agent deep reinforcement learning
Multi-agent systems
Multiagent systems
Networks
Optimization
Redesign
Resource allocation
Resource management
Satellite broadcasting
Satellite communication
Satellite mobile edge computing
Satellite observation
Satellites
Space missions
Title Collaborative Task Offloading Optimization for Satellite Mobile Edge Computing Using Multi-Agent Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10596043
https://www.proquest.com/docview/3117131858
Volume 73
WOSCitedRecordID wos001336949600106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBN6K85IGFIdSxncQZEQ8x8BIUxBbZ5wtCQIto6cSPx3ZcHkIgsWXwRVE--_ydffcdIdsiE5pnqk5S0DaRus4SI0uToGBWKltmZTiHvDkpzs7U7W15EYvVQy0MIobkM9z1j-Eu3_bh1R-VdTwXyJkUk2SyKPKmWOvjykDK2B4vdSvY8YLxnSQrO92brosEudwVjp7kkn_bg0JTlR-eOGwvR3P__LB5Mht5JN1rgF8gE9hbJDNf1AWXyNv-J8YjpF09eKDndf3YD2nz9Nw5i6dYhUkddaVXOqhzDpGe9o1zFvTQ3iFt2j54g5BdQEPFbrLnK7LoAeIzvcQgvgrhnJFGvda7ZXJ9dNjdP05is4UEeMmHiQKOqnDhUl06v4O5Qc0LK2VtQOjCcNDaKi2sNUwboTWzwFAKjmCMhQzFCmn1-j1cJbSAQtTWcQkwWqbMKgi696AgZxottEln_PsriErkviHGYxUiElZWDrDKA1ZFwNpk58PiuVHh-GPssgfoy7gGmzbZGENcxXU6qESauijdcRa19ovZOpn2b2_y9zZIa_jyiptkCkbD-8HLVpiC78le3GY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61tFLpAfoAsTxaH3rpIaxjOxvniHgIxLJUbYq4RfZ4gqrCLmIXTv3x2I4XqKpW6i0HjxLls8ff2DPfAHyShTSi0G2Wo3GZMm2RWVXZjCR3SruqqOI55NmwHI30-Xn1JRWrx1oYIorJZ7QdHuNdvpvgbTgq6wcuMOBKPocXhVKCd-VaD5cGSqUGeblfw54ZzG8ledWvz2ofCwq1LT1BGSjx2y4U26r84YvjBnOw_J-f9gaWEpNkOx30b-EZjd_B6yf6gu_h1-4jynfEajP9yU7b9nISE-fZqXcXV6kOk3nyyr6ZqM85I3Yysd5dsH13Qaxr_BAMYn4BizW72U6oyWJ7RNfsK0X5VYwnjSwptl6swPeD_Xr3MEvtFjIUlZhlGgXp0gdMbeU9Dw0sGVE6pVqL0pRWoDFOG-mc5cZKY7hDTkoKQmsdFiRXYWE8GdMasBJL2TrPJtAalXOnMSrfo8YBN-SwB_35728waZGHlhiXTYxJeNV4wJoAWJMA68HnB4vrTofjH2NXAkBPxnXY9GBzDnGTVuq0kXnu43TPWvT6X8w-wqvD-mTYDI9GxxuwGN7UZfNtwsLs5pa24CXezX5Mbz7E6XgPYzHfrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Task+Offloading+Optimization+for+Satellite+Mobile+Edge+Computing+Using+Multi-Agent+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zhang%2C+Hangyu&rft.au=Zhao%2C+Hongbo&rft.au=Liu%2C+Rongke&rft.au=Kaushik%2C+Aryan&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=73&rft.issue=10&rft.spage=15483&rft.epage=15498&rft_id=info:doi/10.1109%2FTVT.2024.3405642&rft.externalDocID=10596043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon