Throughput Maximization for Result Multicasting by Admitting Delay-Aware Tasks in MEC Networks for High-Speed Railways

The rapid expansion of high-speed railways (HSRs) and the growing demand for diverse data services during long journeys require efficient computing services. Mobile Edge Computing (MEC) emerged as a promising platform to fulfill this demand. We envision a scenario wherein passengers interact with ea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on vehicular technology Ročník 73; číslo 6; s. 8765 - 8781
Hlavní autoři: Xu, Junyi, Wei, Zhenchun, Yuan, Xiaohui, Qiao, Yan, Lyu, Zengwei, Han, Jianghong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9545, 1939-9359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rapid expansion of high-speed railways (HSRs) and the growing demand for diverse data services during long journeys require efficient computing services. Mobile Edge Computing (MEC) emerged as a promising platform to fulfill this demand. We envision a scenario wherein passengers interact with each other on the same or different trains in real-time by offloading computationally intensive and delay-sensitive tasks to the track-side MEC networks for HSRs and computation results are multicast to the receivers. To improve the quality of data services, we propose a novel approach to optimize network throughput by admitting as many tasks as possible, subject to delay constraints, and multicasting the maximum number of results. The high mobility of trains and the frequent handovers during train-ground communication are factored into our scheme, which presents significant challenges to jointly consider the dynamic multicast grouping and admission/rejection policies for tasks/results. We introduce the multi-group-shared Group Steiner tree (GST) model and propose an efficient heuristic algorithm that reduces the multicast routing problem to finding a GST for each candidate cloudlet. The effectiveness of our proposed algorithm is demonstrated through simulations and the results are promising.
AbstractList The rapid expansion of high-speed railways (HSRs) and the growing demand for diverse data services during long journeys require efficient computing services. Mobile Edge Computing (MEC) emerged as a promising platform to fulfill this demand. We envision a scenario wherein passengers interact with each other on the same or different trains in real-time by offloading computationally intensive and delay-sensitive tasks to the track-side MEC networks for HSRs and computation results are multicast to the receivers. To improve the quality of data services, we propose a novel approach to optimize network throughput by admitting as many tasks as possible, subject to delay constraints, and multicasting the maximum number of results. The high mobility of trains and the frequent handovers during train-ground communication are factored into our scheme, which presents significant challenges to jointly consider the dynamic multicast grouping and admission/rejection policies for tasks/results. We introduce the multi-group-shared Group Steiner tree (GST) model and propose an efficient heuristic algorithm that reduces the multicast routing problem to finding a GST for each candidate cloudlet. The effectiveness of our proposed algorithm is demonstrated through simulations and the results are promising.
Author Qiao, Yan
Yuan, Xiaohui
Han, Jianghong
Xu, Junyi
Wei, Zhenchun
Lyu, Zengwei
Author_xml – sequence: 1
  givenname: Junyi
  orcidid: 0009-0003-8135-7430
  surname: Xu
  fullname: Xu, Junyi
  email: 2016010090@mail.hfut.edu.cn
  organization: School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
– sequence: 2
  givenname: Zhenchun
  orcidid: 0000-0003-2751-6501
  surname: Wei
  fullname: Wei, Zhenchun
  email: weizc@hfut.edu.cn
  organization: School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
– sequence: 3
  givenname: Xiaohui
  orcidid: 0000-0001-6897-4563
  surname: Yuan
  fullname: Yuan, Xiaohui
  email: xiaohui.yuan@unt.edu
  organization: Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA
– sequence: 4
  givenname: Yan
  orcidid: 0000-0002-4407-1762
  surname: Qiao
  fullname: Qiao, Yan
  email: qiaoyan@hfut.edu.cn
  organization: School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
– sequence: 5
  givenname: Zengwei
  orcidid: 0000-0001-6287-1926
  surname: Lyu
  fullname: Lyu, Zengwei
  email: lzw@hfut.edu.cn
  organization: School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
– sequence: 6
  givenname: Jianghong
  orcidid: 0000-0003-1133-317X
  surname: Han
  fullname: Han, Jianghong
  email: hanjh@hfut.edu.cn
  organization: School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
BookMark eNp9kDtPwzAUhS0EEuWxMzBYYk6x40fisSqPIlGQILBGjrlpDW1SbIdSfj1uy4AYWGwd65xzr78DtNu0DSB0QkmfUqLOi-ein5KU9xkTWSbVDupRxVSimFC7qEcIzRMluNhHB96_Rsm5oj30UUxd202miy7gsf60c_ulg20bXLcOP4DvZvE9HtZoH2wzwdUKD17mNmzEBcz0KhkstQNcaP_msW3w-HKI7yAsWxf1umZkJ9PkcQHwgh-0nS31yh-hvVrPPBz_3Ifo6eqyGI6S2_vrm-HgNjGpSkOS5yTTGrjQRORGScN0xeJ3a1rpCipmqKQirSQArzMQLKem5lpSw7NK1LRmh-hs27tw7XsHPpSvbeeaOLJkRCpJM5WL6JJbl3Gt9w7q0tiwwRBcXLikpFwzLiPjcs24_GEcg-RPcOHsXLvVf5HTbcQCwC87p6nMU_YN7-iK4A
CODEN ITVTAB
CitedBy_id crossref_primary_10_1016_j_dcan_2025_03_007
crossref_primary_10_3390_electronics13152982
Cites_doi 10.1109/JIOT.2020.2981958
10.1006/jagm.1999.1042
10.1016/j.jnca.2016.11.014
10.1109/TMC.2020.3034479
10.1016/j.comnet.2019.05.008
10.1109/TVT.2021.3099525
10.1109/TPDS.2020.2983918
10.1109/TPDS.2019.2937524
10.1016/j.adhoc.2018.09.018
10.1109/TNET.2015.2487344
10.1109/TVT.2016.2593486
10.1109/TMC.2017.2711014
10.1109/TCOMM.2018.2881438
10.1109/TNET.2020.2968746
10.1109/JIOT.2019.2892398
10.1109/ITSC45102.2020.9294733
10.1109/QoMEX.2019.8743193
10.1109/JSAC.2011.111002
10.1109/TMC.2014.2333731
10.1109/TVT.2022.3206137
10.1109/TBC.2018.2863102
10.1007/978-0-387-30165-5_25
10.1109/WCNC.2019.8885806
10.1109/SURV.2013.062613.00160
10.1109/TVT.2019.2923066
10.1109/TMC.2017.2777491
10.1287/moor.4.4.339
10.1109/TWC.2020.2979147
10.1109/WCNC45663.2020.9120643
10.1109/TVT.2019.2957962
10.1109/WCNC45663.2020.9120846
10.1007/BF01386390
10.1109/JIOT.2021.3084509
10.1109/TVT.2015.2388483
10.1016/j.automatica.2019.108646
10.1109/TCOMM.2021.3115480
10.1109/INFCOM.2001.916277
10.1016/j.tcs.2022.11.014
10.1109/TITS.2018.2870198
10.1109/TVT.2022.3185331
10.1109/TVT.2020.3000757
10.1109/GLOCOM.2018.8647389
10.1109/TMC.2018.2876000
10.1109/ICDE.2007.367929
10.1109/TPDS.2013.67
10.14778/3450980.3450982
10.1016/j.jnca.2021.103195
10.1109/COMST.2017.2745201
10.1109/TVT.2021.3101571
10.1109/VTC2020-Fall49728.2020.9348638
10.1109/ICCC54389.2021.9674671
10.1109/JSAC.2012.120505
10.1109/TMC.2021.3125949
10.1109/TITS.2021.3131202
10.1109/TVT.2014.2362912
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2024.3357769
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 8781
ExternalDocumentID 10_1109_TVT_2024_3357769
10412682
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities; Fundamental Research Funds for the Central Universities of China
  grantid: PA2023GDGP0044
  funderid: 10.13039/501100012226
– fundername: Natural Science Foundation of Anhui Province
  grantid: 2108085MF202
  funderid: 10.13039/501100003995
– fundername: National Natural Science Foundation of China
  grantid: 62002097
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-8807aae45a058c96c3ab3110f1babeb3c16152b6ee4f7e5381cf4a61c47b5f1f3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001252619600124&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:04:39 EDT 2025
Sat Nov 29 02:59:13 EST 2025
Tue Nov 18 20:52:06 EST 2025
Wed Aug 27 01:57:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-8807aae45a058c96c3ab3110f1babeb3c16152b6ee4f7e5381cf4a61c47b5f1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4407-1762
0000-0001-6897-4563
0000-0001-6287-1926
0009-0003-8135-7430
0000-0003-2751-6501
0000-0003-1133-317X
PQID 3069617985
PQPubID 85454
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_TVT_2024_3357769
ieee_primary_10412682
crossref_primary_10_1109_TVT_2024_3357769
proquest_journals_3069617985
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
(ref43) 2024
ref14
ref53
ref52
ref11
ref55
ref10
ref54
Davis (ref36) 1984
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
(ref58) 2024
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
Xu (ref27) 2024
ref29
ref60
Company (ref59) 2024
References_xml – ident: ref24
  doi: 10.1109/JIOT.2020.2981958
– ident: ref57
  doi: 10.1006/jagm.1999.1042
– ident: ref37
  doi: 10.1016/j.jnca.2016.11.014
– ident: ref5
  doi: 10.1109/TMC.2020.3034479
– ident: ref19
  doi: 10.1016/j.comnet.2019.05.008
– ident: ref11
  doi: 10.1109/TVT.2021.3099525
– ident: ref28
  doi: 10.1109/TPDS.2020.2983918
– ident: ref51
  doi: 10.1109/TPDS.2019.2937524
– ident: ref21
  doi: 10.1016/j.adhoc.2018.09.018
– ident: ref45
  doi: 10.1109/TNET.2015.2487344
– ident: ref49
  doi: 10.1109/TVT.2016.2593486
– ident: ref29
  doi: 10.1109/TMC.2017.2711014
– ident: ref50
  doi: 10.1109/TCOMM.2018.2881438
– ident: ref22
  doi: 10.1109/TNET.2020.2968746
– year: 2024
  ident: ref43
  article-title: GT-ITM: Georgia tech internetwork topology models
– ident: ref8
  doi: 10.1109/JIOT.2019.2892398
– ident: ref13
  doi: 10.1109/ITSC45102.2020.9294733
– ident: ref60
  doi: 10.1109/QoMEX.2019.8743193
– ident: ref52
  doi: 10.1109/JSAC.2011.111002
– ident: ref55
  doi: 10.1109/TMC.2014.2333731
– ident: ref9
  doi: 10.1109/TVT.2022.3206137
– ident: ref10
  doi: 10.1109/TBC.2018.2863102
– ident: ref39
  doi: 10.1007/978-0-387-30165-5_25
– year: 2024
  ident: ref59
  article-title: Tokaido-sanyo shinkansen timetable
– ident: ref20
  doi: 10.1109/WCNC.2019.8885806
– ident: ref31
  doi: 10.1109/SURV.2013.062613.00160
– ident: ref47
  doi: 10.1109/TVT.2019.2923066
– ident: ref30
  doi: 10.1109/TMC.2017.2777491
– ident: ref42
  doi: 10.1287/moor.4.4.339
– ident: ref6
  doi: 10.1109/TWC.2020.2979147
– ident: ref1
  doi: 10.1109/WCNC45663.2020.9120643
– ident: ref12
  doi: 10.1109/TVT.2019.2957962
– year: 2024
  ident: ref58
  article-title: 12306 China railway
– ident: ref23
  doi: 10.1109/WCNC45663.2020.9120846
– ident: ref54
  doi: 10.1007/BF01386390
– ident: ref3
  doi: 10.1109/JIOT.2021.3084509
– ident: ref46
  doi: 10.1109/TVT.2015.2388483
– ident: ref26
  doi: 10.1016/j.automatica.2019.108646
– ident: ref35
  doi: 10.1109/TCOMM.2021.3115480
– ident: ref41
  doi: 10.1109/INFCOM.2001.916277
– ident: ref56
  doi: 10.1016/j.tcs.2022.11.014
– ident: ref18
  doi: 10.1109/TITS.2018.2870198
– ident: ref16
  doi: 10.1109/TVT.2022.3185331
– ident: ref2
  doi: 10.1109/TVT.2020.3000757
– ident: ref34
  doi: 10.1109/GLOCOM.2018.8647389
– ident: ref33
  doi: 10.1109/TMC.2018.2876000
– ident: ref38
  doi: 10.1109/ICDE.2007.367929
– ident: ref48
  doi: 10.1109/TPDS.2013.67
– ident: ref40
  doi: 10.14778/3450980.3450982
– ident: ref7
  doi: 10.1016/j.jnca.2021.103195
– ident: ref32
  doi: 10.1109/COMST.2017.2745201
– ident: ref17
  doi: 10.1109/TVT.2021.3101571
– year: 2024
  ident: ref27
  article-title: The supplement
– ident: ref14
  doi: 10.1109/VTC2020-Fall49728.2020.9348638
– ident: ref15
  doi: 10.1109/ICCC54389.2021.9674671
– ident: ref44
  doi: 10.1109/JSAC.2012.120505
– ident: ref4
  doi: 10.1109/TMC.2021.3125949
– volume-title: Methods of Numerical Integration
  year: 1984
  ident: ref36
– ident: ref25
  doi: 10.1109/TITS.2021.3131202
– ident: ref53
  doi: 10.1109/TVT.2014.2362912
SSID ssj0014491
Score 2.4565077
Snippet The rapid expansion of high-speed railways (HSRs) and the growing demand for diverse data services during long journeys require efficient computing services....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8765
SubjectTerms admission control
Algorithms
Cloud computing
Delay
Delays
Edge computing
group Steiner tree problem
Heuristic methods
High speed rail
high-speed railways
Mobile computing
Multicast algorithms
Multicast communication
Multicasting
Optimization
Real time
Routing
Throughput
Title Throughput Maximization for Result Multicasting by Admitting Delay-Aware Tasks in MEC Networks for High-Speed Railways
URI https://ieeexplore.ieee.org/document/10412682
https://www.proquest.com/docview/3069617985
Volume 73
WOSCitedRecordID wos001252619600124&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4AcYADb8R4KQcuHAptmibNEfEQl01oFMStSjJXmhjbtO7B_j1O2qFJCCRuVZVEVb7YsevPNiEXnIMRikWo_ZQJeGpFoNNCBmgZR5alIEB0fLMJ2Wqlb2_qqU5W97kwAODJZ3DlHn0svzOwE_erDCWcR0ykqHFXpZRVstZ3yIDzuj1ehBKMdsEiJhmq6-w1Q0-Q8as4TqR03OalO8g3Vfmhif318rD9zw_bIVu1HUlvKuB3yQr098jmUnXBfTLNqh48w8mYNvVn96NOuaRop9I2lJMevvfVN3TpyM_UzKmrpeuZ0PQOenoe3Mz0CGimy_eSdvu0eX9LWxVxvPTLOJpI8DzEK5C2dbc30_PygLw83Ge3j0HdZiGwTLFxgBIstQae6DBJrRI21ibGfSsiow362tYZhcwIAF5IQAUZ2YJrEVkuTVJERXxI1vqDPhwRag0OFoqLxKKp6IKKjGlWmNCGHRMWqkGuFxuf27oGuWuF0cu9LxKqHKHKHVR5DVWDXH7PGFb1N_4Ye-CgWRpXodIgpwtw81pCyxxdJSVctbbk-JdpJ2TDrV7xwk7J2ng0gTOybqfjbjk694fvC6Pu15A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwELUQILEcgGVZUb7WBy4cArHjOPGxKiAQtEIQELfIdidStaVUTQv03zN2UlQJgcQtiuwk8suMZzxvZgg5FAKMVJyh9lMmEKmVgU6LJEDLmFmeggTZ9c0mkk4nfXxUN3Wyus-FAQBPPoNjd-lj-d1nO3FHZSjhgnGZosZdioXgrErX-ggaCFE3yGMow2gZzKKSoTrJHjL0Bbk4jqI4SRy7eW4X8m1VPuliv8Gcr__w0zbIWm1J0mYF_W-yAINNsjpXX_APecmqLjzDyZi29VvvqU66pGip0lsoJ3287-tv6NLRn6mZUldN13Oh6Sn09TRovuoR0EyX_0vaG9D2WYt2Kup46R_jiCLB3RA3QXqre_1XPS23yP35Wda6COpGC4Hlio8DlOFEaxCxDuPUKmkjbSJct4IZbdDbts4s5EYCiCIBVJHMFkJLZkVi4oIV0V-yOHgewDah1uBgqYSMLRqLLqzIueaFCW3YNWGhGuRktvC5rauQu2YY_dx7I6HKEarcQZXXUDXI0ceMYVWB45uxWw6auXEVKg2yNwM3r2W0zNFZUtLVa4t3vpj2j6xcZO3r_Pqyc7VLfrk3VSyxPbI4Hk1gnyzbl3GvHB34H_EdAK_a1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Throughput+Maximization+for+Result+Multicasting+by+Admitting+Delay-Aware+Tasks+in+MEC+Networks+for+High-Speed+Railways&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Xu%2C+Junyi&rft.au=Wei%2C+Zhenchun&rft.au=Yuan%2C+Xiaohui&rft.au=Qiao%2C+Yan&rft.date=2024-06-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=73&rft.issue=6&rft.spage=8765&rft.epage=8781&rft_id=info:doi/10.1109%2FTVT.2024.3357769&rft.externalDocID=10412682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon