The Inverse Problem of Positive Autoconvolution

We pose the problem of approximating optimally a given nonnegative signal with the scalar autoconvolution of a nonnegative signal. The I-divergence is chosen as the optimality criterion being well suited to incorporate nonnegativity constraints. After proving the existence of an optimal approximatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 69; číslo 6; s. 4081 - 4092
Hlavní autoři: Finesso, Lorenzo, Spreij, Peter
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We pose the problem of approximating optimally a given nonnegative signal with the scalar autoconvolution of a nonnegative signal. The I-divergence is chosen as the optimality criterion being well suited to incorporate nonnegativity constraints. After proving the existence of an optimal approximation, we derive an iterative descent algorithm of the alternating minimization type to find a minimizer. The algorithm is based on the lifting technique developed by Csiszár and Tusnádi and exploits the optimality properties of the related minimization problems in the larger space. We study the asymptotic behavior of the iterative algorithm and prove, among other results, that its limit points are Kuhn-Tucker points of the original minimization problem. Numerical experiments confirm the asymptotic results and exhibit the fast convergence of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2023.3244407