A Deterministic Algorithm for Computing the Weight Distribution of Polar Code

In this work, we present a deterministic algorithm for computing the entire weight distribution of polar codes. As the first step, we derive an efficient recursive procedure to compute the weight distribution that arises in successive cancellation decoding of polar codes along any decoding path. Thi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 70; no. 5; pp. 3175 - 3189
Main Authors: Yao, Hanwen, Fazeli, Arman, Vardy, Alexander
Format: Journal Article
Language:English
Published: New York IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, we present a deterministic algorithm for computing the entire weight distribution of polar codes. As the first step, we derive an efficient recursive procedure to compute the weight distribution that arises in successive cancellation decoding of polar codes along any decoding path. This solves the open problem recently posed by Polyanskaya, Davletshin, and Polyanskii. Using this recursive procedure, at code length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>, we can compute the weight distribution of any polar cosets in time <inline-formula> <tex-math notation="LaTeX">O(n^{2}) </tex-math></inline-formula>. We show that any polar code can be represented as a disjoint union of such polar cosets; moreover, this representation extends to polar codes with dynamically frozen bits. However, the number of polar cosets in such representation scales exponentially with a parameter introduced herein, which we call the mixing factor. To upper bound the complexity of our algorithm for polar codes being decreasing monomial codes, we study the range of their mixing factors. We prove that among all decreasing monomial codes with rates at most 1/2, self-dual Reed-Muller codes have the largest mixing factors. To further reduce the complexity of our algorithm, we make use of the fact that, as decreasing monomial codes, polar codes have a large automorphism group. That automorphism group includes the block lower-triangular affine group (BLTA), which in turn contains the lower-triangular affine group (LTA). We prove that a subgroup of LTA acts transitively on certain subsets of decreasing monomial codes, thereby drastically reducing the number of polar cosets that we need to evaluate. This complexity reduction makes it possible to compute the weight distribution of polar codes at length <inline-formula> <tex-math notation="LaTeX">n=128 </tex-math></inline-formula>.
AbstractList In this work, we present a deterministic algorithm for computing the entire weight distribution of polar codes. As the first step, we derive an efficient recursive procedure to compute the weight distribution that arises in successive cancellation decoding of polar codes along any decoding path. This solves the open problem recently posed by Polyanskaya, Davletshin, and Polyanskii. Using this recursive procedure, at code length [Formula Omitted], we can compute the weight distribution of any polar cosets in time [Formula Omitted]. We show that any polar code can be represented as a disjoint union of such polar cosets; moreover, this representation extends to polar codes with dynamically frozen bits. However, the number of polar cosets in such representation scales exponentially with a parameter introduced herein, which we call the mixing factor. To upper bound the complexity of our algorithm for polar codes being decreasing monomial codes, we study the range of their mixing factors. We prove that among all decreasing monomial codes with rates at most 1/2, self-dual Reed-Muller codes have the largest mixing factors. To further reduce the complexity of our algorithm, we make use of the fact that, as decreasing monomial codes, polar codes have a large automorphism group. That automorphism group includes the block lower-triangular affine group (BLTA), which in turn contains the lower-triangular affine group (LTA). We prove that a subgroup of LTA acts transitively on certain subsets of decreasing monomial codes, thereby drastically reducing the number of polar cosets that we need to evaluate. This complexity reduction makes it possible to compute the weight distribution of polar codes at length [Formula Omitted].
In this work, we present a deterministic algorithm for computing the entire weight distribution of polar codes. As the first step, we derive an efficient recursive procedure to compute the weight distribution that arises in successive cancellation decoding of polar codes along any decoding path. This solves the open problem recently posed by Polyanskaya, Davletshin, and Polyanskii. Using this recursive procedure, at code length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>, we can compute the weight distribution of any polar cosets in time <inline-formula> <tex-math notation="LaTeX">O(n^{2}) </tex-math></inline-formula>. We show that any polar code can be represented as a disjoint union of such polar cosets; moreover, this representation extends to polar codes with dynamically frozen bits. However, the number of polar cosets in such representation scales exponentially with a parameter introduced herein, which we call the mixing factor. To upper bound the complexity of our algorithm for polar codes being decreasing monomial codes, we study the range of their mixing factors. We prove that among all decreasing monomial codes with rates at most 1/2, self-dual Reed-Muller codes have the largest mixing factors. To further reduce the complexity of our algorithm, we make use of the fact that, as decreasing monomial codes, polar codes have a large automorphism group. That automorphism group includes the block lower-triangular affine group (BLTA), which in turn contains the lower-triangular affine group (LTA). We prove that a subgroup of LTA acts transitively on certain subsets of decreasing monomial codes, thereby drastically reducing the number of polar cosets that we need to evaluate. This complexity reduction makes it possible to compute the weight distribution of polar codes at length <inline-formula> <tex-math notation="LaTeX">n=128 </tex-math></inline-formula>.
Author Vardy, Alexander
Fazeli, Arman
Yao, Hanwen
Author_xml – sequence: 1
  givenname: Hanwen
  orcidid: 0000-0002-3854-1481
  surname: Yao
  fullname: Yao, Hanwen
  email: hanwen.yao@duke.edu
  organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
– sequence: 2
  givenname: Arman
  orcidid: 0000-0001-8321-3391
  surname: Fazeli
  fullname: Fazeli, Arman
  email: afazelic@ucsd.edu
  organization: Apple Inc., Los Altos, CA, USA
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0003-3303-9078
  surname: Vardy
  fullname: Vardy, Alexander
  email: vardy@ece.ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA, USA
BookMark eNp9kE1PAjEQhhuDiYDePXho4nmxn0t7JOAHCUYPGI9N222hZNlitxz89-4GDsaDp8lMnndm8ozAoImNA-AWownGSD6sl-sJQYROKGEUS3wBhpjzaSFLzgZgiBAWhWRMXIFR2-66lnFMhuB1Bhcuu7QPTWhzsHBWb2IKebuHPiY4j_vDMYdmA_PWwU8XNtsMFx2ZgunmsYHRw_dY6x6t3DW49Lpu3c25jsHH0-N6_lKs3p6X89mqsESSXAgmja2cpo4JZ6STnmDjkWFSI-OZFVNbGW00qRjmvjIMYcwNxYZyI6wwdAzuT3sPKX4dXZvVLh5T051UFDFWElIy2lHlibIptm1yXtmQdf91TjrUCiPVq1OdOtWrU2d1XRD9CR5S2Ov0_V_k7hQJzrlfOGKo5IL-AITlfCk
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3439431
crossref_primary_10_3390_e25111498
Cites_doi 10.1109/LCOMM.2017.2753222
10.1109/WCSP.2017.8170924
10.1109/18.532911
10.1109/18.256515
10.1109/ITW.2013.6691213
10.1109/GLOBECOM46510.2021.9685181
10.1109/LCOMM.2013.091113.131213
10.1109/isit.1997.613298
10.1109/TIT.1978.1055873
10.1587/transfun.2020EAP1119
10.1109/TIT.2009.2021379
10.1109/ISIT.1997.613298
10.1002/0470035706
10.1109/WCNC.2014.6952077
10.1109/TIT.2015.2410251
10.1109/LCOMM.2012.111612.121898
10.1109/JSAC.2015.2504269
10.1109/ISIT45174.2021.9518184
10.3390/e23070841
10.1109/ISIT.2016.7541293
10.1002/j.1538-7305.1963.tb04003.x
10.1109/18.605611
10.1109/TCOMM.2020.3020959
10.1109/ISIT.2016.7541295
10.1109/TIT.1971.1054678
10.1109/TVT.2021.3052550
10.1007/978-1-4899-2174-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2023.3243191
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 3189
ExternalDocumentID 10_1109_TIT_2023_3243191
10040658
Genre orig-research
GrantInformation_xml – fundername: U.S. National Science Foundation (NSF)
  grantid: CCF-1405119; CCF-1719139
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-849bcdea3e48eb9e9f21bf0b49a0bf4c87cdbaba2d415fdb40115b31b35b8c8b3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001217153500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 09 06:11:15 EST 2025
Sat Nov 29 03:31:50 EST 2025
Tue Nov 18 22:35:36 EST 2025
Wed Aug 27 02:06:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-849bcdea3e48eb9e9f21bf0b49a0bf4c87cdbaba2d415fdb40115b31b35b8c8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3854-1481
0000-0003-3303-9078
0000-0001-8321-3391
PQID 3044622643
PQPubID 36024
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TIT_2023_3243191
crossref_primary_10_1109_TIT_2023_3243191
proquest_journals_3044622643
ieee_primary_10040658
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref16
ref19
ref18
Arikan (ref25) 2019
Niu (ref17) 2019
ref24
Cormen (ref23) 2009
ref20
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
(ref26) 2023
ref5
MacWilliams (ref22) 1977; 16
References_xml – ident: ref12
  doi: 10.1109/LCOMM.2017.2753222
– ident: ref10
  doi: 10.1109/WCSP.2017.8170924
– ident: ref7
  doi: 10.1109/18.532911
– ident: ref30
  doi: 10.1109/18.256515
– ident: ref19
  doi: 10.1109/ITW.2013.6691213
– ident: ref21
  doi: 10.1109/GLOBECOM46510.2021.9685181
– ident: ref11
  doi: 10.1109/LCOMM.2013.091113.131213
– ident: ref4
  doi: 10.1109/isit.1997.613298
– volume: 16
  volume-title: The Theory of Error Correcting Codes
  year: 1977
  ident: ref22
– ident: ref1
  doi: 10.1109/TIT.1978.1055873
– year: 2019
  ident: ref17
  article-title: Polar codes: Analysis and construction based on polar spectrum
  publication-title: arXiv:1908.05889
– ident: ref5
  doi: 10.1587/transfun.2020EAP1119
– ident: ref8
  doi: 10.1109/TIT.2009.2021379
– ident: ref3
  doi: 10.1109/ISIT.1997.613298
– ident: ref31
  doi: 10.1002/0470035706
– ident: ref16
  doi: 10.1109/WCNC.2014.6952077
– ident: ref15
  doi: 10.1109/TIT.2015.2410251
– ident: ref14
  doi: 10.1109/LCOMM.2012.111612.121898
– volume-title: 5G; NR; Multiplexing and Channel Coding
  year: 2023
  ident: ref26
– ident: ref24
  doi: 10.1109/JSAC.2015.2504269
– ident: ref20
  doi: 10.1109/ISIT45174.2021.9518184
– ident: ref27
  doi: 10.3390/e23070841
– ident: ref32
  doi: 10.1109/ISIT.2016.7541293
– ident: ref9
  doi: 10.1002/j.1538-7305.1963.tb04003.x
– ident: ref2
  doi: 10.1109/18.605611
– ident: ref18
  doi: 10.1109/TCOMM.2020.3020959
– ident: ref13
  doi: 10.1109/ISIT.2016.7541295
– volume-title: Introduction to Algorithms
  year: 2009
  ident: ref23
– ident: ref6
  doi: 10.1109/TIT.1971.1054678
– year: 2019
  ident: ref25
  article-title: From sequential decoding to channel polarization and back again
  publication-title: arXiv:1908.09594
– ident: ref28
  doi: 10.1109/TVT.2021.3052550
– ident: ref29
  doi: 10.1007/978-1-4899-2174-1
SSID ssj0014512
Score 2.481606
Snippet In this work, we present a deterministic algorithm for computing the entire weight distribution of polar codes. As the first step, we derive an efficient...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3175
SubjectTerms Affine transformations
Algorithms
Automorphisms
Codes
Complexity
Complexity theory
Computation
Decoding
decreasing monomial codes
Indexes
Polar codes
Representations
Subgroups
Symbols
Upper bound
Upper bounds
weight distribution
Title A Deterministic Algorithm for Computing the Weight Distribution of Polar Code
URI https://ieeexplore.ieee.org/document/10040658
https://www.proquest.com/docview/3044622643
Volume 70
WOSCitedRecordID wos001217153500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8IwFH4R4kEPoogRRdODFw-DjRW2HolI9CDhgJHb0natkiAzMPz99nUdwRhNvG3Je8vS1_a99r33fQA3aSQ5N47do5qGHu1x6QkzbbyUY5YswEoibckmovE4ns3YxDWr214YpZQtPlNtfLS5_DSTG7wq6yC6GbrMClSiqF80a21TBrQXFNDggVnB5tBR5iR91pk-TttIE9420YOZcsE3H2RJVX7sxNa9jGr__LFjOHJxJBkUhj-BPbWsQ63kaCBuydbhcAdw8BSeBmTo6l8sQDMZLF6z1Tx_eycmeCWFupEkJiwkL_bWlAwRWtexYpFMkwkeho1oqhrwPLqf3j14jlDBk13Wzb2YMiFTxUNFYyWYYrobCO0LyrgvNJVxJFPBBe-mxq3rVFCMF0UYiLAnYhmL8Ayqy2ypzoHoAPUD5cdGjPY04zIybxjfMdrXsgmdcogT6dDGkfRikdhTh88SY5QEjZI4ozThdqvxUSBt_CHbQCPsyBXj34RWacbErcV1EmLOGvuFw4tf1C7hwHydFnWMLajmq426gn35mc_Xq2s7zb4AhhPPgA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIAEHxmOI8cyBC4dufaS0OU6MaRMw7TAEtypJE5g0NrQHv584zaYhBBK3VrLVKk5iJ7a_D-AqTyTnxrF7VNPIozGXnjDTxss5ZskCrCTSlmwi6XbTlxfWc83qthdGKWWLz1QNH20uPx_LOV6V1RHdDF3mOmzElIZ-0a61TBrQOCjAwQOzhs2xY5GV9Fm93-nXkCi8ZuIHM-mCb17I0qr82Iutg2mV__lre7DrIknSKEy_D2tqdADlBUsDcYv2AHZWIAcP4bFBmq4CxkI0k8bwdTwZzN7eiQlfSaFuJIkJDMmzvTclTQTXdbxYZKxJD4_DRjRXFXhq3fVv256jVPBkyMKZl1ImZK54pGiqBFNMh4HQvqCM-0JTmSYyF1zwMDeOXeeCYsQookBEsUhlKqIjKI3GI3UMRAeoHyg_NWI01ozLxLxhhMfojZZVqC-GOJMObxxpL4aZPXf4LDNGydAomTNKFa6XGh8F1sYfshU0wopcMf5VOFuYMXOrcZpFmLXGjuHo5Be1S9hq9x8fsodO9_4Uts2XaFHVeAal2WSuzmFTfs4G08mFnXJfeh3Sxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deterministic+Algorithm+for+Computing+the+Weight+Distribution+of+Polar+Code&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Yao%2C+Hanwen&rft.au=Fazeli%2C+Arman&rft.au=Vardy%2C+Alexander&rft.date=2024-05-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=70&rft.issue=5&rft.spage=3175&rft.epage=3189&rft_id=info:doi/10.1109%2FTIT.2023.3243191&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2023_3243191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon