Angle Estimation for Bistatic MIMO Radar under Element Failure via Tensor Completion with Factor Priors

The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this paper, we consider the angle estimation problem for bistatic MIMO radar under element failure. To exploit the multidimensional structure, a covariance...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on vehicular technology Ročník 72; číslo 12; s. 1 - 14
Hlavní autori: Chen, Jinli, Jiang, Zhijun, Zhu, Xicheng, Li, Jiaqiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9545, 1939-9359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this paper, we consider the angle estimation problem for bistatic MIMO radar under element failure. To exploit the multidimensional structure, a covariance tensor of the uniform linear array (ULA)-based MIMO radar is constructed, where some slices are entirely missing due to faults in the array elements. Then, recovering failed-element signals can be formulated as a low-rank tensor completion (LRTC) problem with structurally missing entries. To address this problem, we propose a novel tensor completion approach via CANDECOMP/PARAFAC decomposition with factor priors. The essence of the proposed method is to fully exploit not only the Vandermonde structure of factor matrices but also their correlations. To enforce these factor priors, we formulate an optimization problem that consists of an objective function penalizing the nuclear norm of block Hankel matrices formed by the factor matrices and the constraints to reveal the relationship among the factor matrices. To solve the optimization problem, we develop an algorithm based on the alternating direction method of multipliers (ADMM), thereby recovering the signals of failed elements. Finally, conventional algorithms yield robust angle estimation. Simulation results verify the effectiveness of the proposed algorithm for dealing with element failure.
AbstractList The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this article, we consider the angle estimation problem for bistatic MIMO radar under element failure. To exploit the multidimensional structure, a covariance tensor of the uniform linear array (ULA)-based MIMO radar is constructed, where some slices are entirely missing due to faults in the array elements. Then, recovering failed-element signals can be formulated as a low-rank tensor completion (LRTC) problem with structurally missing entries. To address this problem, we propose a novel tensor completion approach via CANDECOMP/PARAFAC decomposition with factor priors. The essence of the proposed method is to fully exploit not only the Vandermonde structure of factor matrices but also their correlations. To enforce these factor priors, we formulate an optimization problem that consists of an objective function penalizing the nuclear norm of block Hankel matrices formed by the factor matrices and the constraints to reveal the relationship among the factor matrices. To solve the optimization problem, we develop an algorithm based on the alternating direction method of multipliers (ADMM), thereby recovering the signals of failed elements. Finally, conventional algorithms yield robust angle estimation. Simulation results verify the effectiveness of the proposed algorithm for dealing with element failure.
The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this paper, we consider the angle estimation problem for bistatic MIMO radar under element failure. To exploit the multidimensional structure, a covariance tensor of the uniform linear array (ULA)-based MIMO radar is constructed, where some slices are entirely missing due to faults in the array elements. Then, recovering failed-element signals can be formulated as a low-rank tensor completion (LRTC) problem with structurally missing entries. To address this problem, we propose a novel tensor completion approach via CANDECOMP/PARAFAC decomposition with factor priors. The essence of the proposed method is to fully exploit not only the Vandermonde structure of factor matrices but also their correlations. To enforce these factor priors, we formulate an optimization problem that consists of an objective function penalizing the nuclear norm of block Hankel matrices formed by the factor matrices and the constraints to reveal the relationship among the factor matrices. To solve the optimization problem, we develop an algorithm based on the alternating direction method of multipliers (ADMM), thereby recovering the signals of failed elements. Finally, conventional algorithms yield robust angle estimation. Simulation results verify the effectiveness of the proposed algorithm for dealing with element failure.
Author Chen, Jinli
Jiang, Zhijun
Li, Jiaqiang
Zhu, Xicheng
Author_xml – sequence: 1
  givenname: Jinli
  orcidid: 0000-0002-4071-4388
  surname: Chen
  fullname: Chen, Jinli
  organization: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Zhijun
  surname: Jiang
  fullname: Jiang, Zhijun
  organization: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 3
  givenname: Xicheng
  surname: Zhu
  fullname: Zhu, Xicheng
  organization: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 4
  givenname: Jiaqiang
  surname: Li
  fullname: Li, Jiaqiang
  organization: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
BookMark eNp9kD1PwzAQhi1UJNrCzsBgiTnFH3ESj6VqoVIrEAqskRtfiqs0KbYD4t_jfgyIgel0p_e50z0D1GvaBhC6pmREKZF3-Vs-YoTxEWeS0IyeoT6VXEaSC9lDfRJmkRSxuEAD5zahjWNJ-2g9btY14KnzZqu8aRtctRbfG-dDV-LlfPmEX5RWFneNBounNWyh8XimTN1ZwJ9G4RwaF6BJu93VcNjxZfx7iJQ-jJ-taa27ROeVqh1cneoQvc6m-eQxWjw9zCfjRVQyyXyUsVhrocqKU50JHRMQCcuSVDCakBVRWUyBE7YCoQG4WgklidapqFTCUp4AH6Lb496dbT86cL7YtJ1twskieImDHM7jkCLHVGlb5yxUxc6G_-13QUmx11kEncVeZ3HSGZDkD1IafzDmbXDxH3hzBA0A_LpDkzSVhP8A7qyEFA
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_LSP_2024_3495555
crossref_primary_10_1016_j_sigpro_2025_110061
crossref_primary_10_1109_TAP_2025_3567446
crossref_primary_10_1109_JSEN_2024_3495989
Cites_doi 10.1109/8.774136
10.1109/ACCESS.2019.2912842
10.1049/el:20080276
10.2172/923081
10.1109/TWC.2019.2953059
10.1109/JSTSP.2009.2038971
10.1109/JSTSP.2018.2873990
10.1137/080738970
10.1109/TSP.2019.2912877
10.1109/TPAMI.2012.39
10.1109/AEMC.2015.7509130
10.1109/JSEN.2019.2906375
10.1109/ACCESS.2019.2949152
10.1109/ACCESS.2019.2959274
10.1109/TSP.2017.2690524
10.1145/2661829.2662083
10.1109/TSP.2021.3092363
10.1109/JSEN.2015.2399510
10.1109/TCYB.2014.2374695
10.1137/07070111X
10.1109/MSP.2008.4408448
10.1109/TIP.2017.2672439
10.1016/j.sigpro.2020.107517
10.1109/TSP.2017.2695566
10.1109/icspcc.2016.7753679
10.1109/TSP.2008.917929
10.1109/MAP.2017.2752683
10.1109/camsap.2015.7383801
10.1109/TVT.2021.3092355
10.1016/j.sigpro.2015.09.036
10.1109/TSP.2022.3176092
10.1109/ACCESS.2018.2810225
10.1109/TAP.2006.889794
10.1007/s10208-015-9269-5
10.1016/j.sigpro.2020.107650
10.1049/el:20089089
10.1109/JPROC.2009.2035722
10.1155/2008/973932
10.1016/j.sigpro.2016.12.017
10.1088/0266-5611/27/2/025010
10.1016/j.sigpro.2017.03.016
10.1561/2200000016
10.1109/LAWP.2018.2841650
10.1109/TAES.2020.3027103
10.1109/TSP.2004.832022
10.1007/s11760-019-01482-9
10.1080/00207217.2019.1570555
10.1109/TAP.2020.3045511
10.1109/TSP.2020.3047227
10.1109/LCOMM.2010.102610.101581
10.1109/TVT.2019.2957511
10.1016/j.sigpro.2020.107709
10.1109/MSP.2007.904812
10.1049/rsn2.12295
10.1109/TSP.2019.2912882
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2023.3290181
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 14
ExternalDocumentID 10_1109_TVT_2023_3290181
10167790
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province of China
  grantid: BK20191399; BK20160959
– fundername: National Natural Science Foundation of China
  grantid: 62071238; 61701249
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
VH1
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-824dd5acf31d85d40e56286752160b0a841e302be5dee3ab5a90dd75fa62736e3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001132470500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 08:35:38 EDT 2025
Sat Nov 29 02:59:09 EST 2025
Tue Nov 18 22:12:34 EST 2025
Wed Aug 27 02:56:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-824dd5acf31d85d40e56286752160b0a841e302be5dee3ab5a90dd75fa62736e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4071-4388
0009-0006-5229-361X
PQID 2904329334
PQPubID 85454
PageCount 14
ParticipantIDs crossref_primary_10_1109_TVT_2023_3290181
proquest_journals_2904329334
crossref_citationtrail_10_1109_TVT_2023_3290181
ieee_primary_10167790
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
Lin (ref57) 2009
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Wen (ref14) 2019; 106
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Rajih (ref56)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref23
  doi: 10.1109/8.774136
– start-page: 1
  volume-title: Proc. 13th Eur. Signal Process. Conf.
  ident: ref56
  article-title: Enhanced line search: A novel method to accelerate PARAFAC
– ident: ref16
  doi: 10.1109/ACCESS.2019.2912842
– ident: ref11
  doi: 10.1049/el:20080276
– ident: ref43
  doi: 10.2172/923081
– ident: ref31
  doi: 10.1109/TWC.2019.2953059
– ident: ref48
  doi: 10.1109/JSTSP.2009.2038971
– ident: ref41
  doi: 10.1109/JSTSP.2018.2873990
– ident: ref54
  doi: 10.1137/080738970
– ident: ref22
  doi: 10.1109/TSP.2019.2912877
– ident: ref37
  doi: 10.1109/TPAMI.2012.39
– ident: ref28
  doi: 10.1109/AEMC.2015.7509130
– ident: ref34
  doi: 10.1109/JSEN.2019.2906375
– ident: ref13
  doi: 10.1109/ACCESS.2019.2949152
– ident: ref32
  doi: 10.1109/ACCESS.2019.2959274
– ident: ref45
  doi: 10.1109/TSP.2017.2690524
– ident: ref53
  doi: 10.1145/2661829.2662083
– ident: ref4
  doi: 10.1109/TSP.2021.3092363
– ident: ref29
  doi: 10.1109/JSEN.2015.2399510
– ident: ref38
  doi: 10.1109/TCYB.2014.2374695
– ident: ref44
  doi: 10.1137/07070111X
– ident: ref2
  doi: 10.1109/MSP.2008.4408448
– ident: ref40
  doi: 10.1109/TIP.2017.2672439
– ident: ref20
  doi: 10.1016/j.sigpro.2020.107517
– ident: ref42
  doi: 10.1109/TSP.2017.2695566
– ident: ref27
  doi: 10.1109/icspcc.2016.7753679
– ident: ref55
  doi: 10.1109/TSP.2008.917929
– ident: ref18
  doi: 10.1109/MAP.2017.2752683
– ident: ref30
  doi: 10.1109/camsap.2015.7383801
– ident: ref6
  doi: 10.1109/TVT.2021.3092355
– ident: ref46
  doi: 10.1016/j.sigpro.2015.09.036
– ident: ref35
  doi: 10.1109/TSP.2022.3176092
– ident: ref49
  doi: 10.1109/ACCESS.2018.2810225
– ident: ref25
  doi: 10.1109/TAP.2006.889794
– ident: ref39
  doi: 10.1007/s10208-015-9269-5
– ident: ref7
  doi: 10.1016/j.sigpro.2020.107650
– ident: ref12
  doi: 10.1049/el:20089089
– ident: ref33
  doi: 10.1109/JPROC.2009.2035722
– ident: ref9
  doi: 10.1155/2008/973932
– ident: ref17
  doi: 10.1016/j.sigpro.2016.12.017
– ident: ref36
  doi: 10.1088/0266-5611/27/2/025010
– ident: ref47
  doi: 10.1016/j.sigpro.2017.03.016
– ident: ref52
  doi: 10.1561/2200000016
– year: 2009
  ident: ref57
  article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
– ident: ref50
  doi: 10.1109/LAWP.2018.2841650
– ident: ref3
  doi: 10.1109/TAES.2020.3027103
– ident: ref51
  doi: 10.1109/TSP.2004.832022
– ident: ref24
  doi: 10.1007/s11760-019-01482-9
– volume: 106
  start-page: 816
  issue: 6
  year: 2019
  ident: ref14
  article-title: Low complexity 3D-OMP algorithms for DOD DOA and Doppler frequency estimation in bistatic MIMO radar
  publication-title: Int. J. Electron.
  doi: 10.1080/00207217.2019.1570555
– ident: ref19
  doi: 10.1109/TAP.2020.3045511
– ident: ref8
  doi: 10.1109/TSP.2020.3047227
– ident: ref10
  doi: 10.1109/LCOMM.2010.102610.101581
– ident: ref15
  doi: 10.1109/TVT.2019.2957511
– ident: ref5
  doi: 10.1016/j.sigpro.2020.107709
– ident: ref1
  doi: 10.1109/MSP.2007.904812
– ident: ref26
  doi: 10.1049/rsn2.12295
– ident: ref21
  doi: 10.1109/TSP.2019.2912882
SSID ssj0014491
Score 2.4416509
Snippet The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this paper, we...
The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this article,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
angle estimation
Antenna arrays
array element failure
Arrays
CANDECOMP/PARAFAC decomposition
Covariance matrices
Estimation
factor priors
Failure
Hankel matrices
Linear arrays
Mathematical analysis
MIMO communication
MIMO radar
Multistatic radar
Optimization
Radar antennas
Radar arrays
tensor completion
Tensors
Title Angle Estimation for Bistatic MIMO Radar under Element Failure via Tensor Completion with Factor Priors
URI https://ieeexplore.ieee.org/document/10167790
https://www.proquest.com/docview/2904329334
Volume 72
WOSCitedRecordID wos001132470500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6seNCDz4rVKnvw4iFt0t0km6NKi4LWIlV6C7vZSQmUVtLH73cmSaUiCt4S2BlCvp2dmZ0XY9cpWKUD5TuofIQjk9Q6RuCrMZ5SsuMaNy1a5j-F_b4ajaJBVaxe1MIAQJF8Bi16LGL5dpYs6aqsTZ4m9cersVoYBmWx1lfIQMpqPJ6HEox2wTom6Ubt4fuwRWPCW4Kihsr7poOKoSo_TuJCvfQO_vlhh2y_siP5bQn8EduC6THb2-gueMLGt9PxBHgXhbisT-RooPI7MhiRiD8_Pr_wV211zqmQLOfdMpOc93RGuep8lWk-RC8XiejUoC7dyIMubnEJ3fXzQZ7N8nmdvfW6w_sHp5qr4CSdqLNAWKS1vk5S4VnlW-mCTwWqIWryAMHRSnog3I4B3wIIbXwdudaGfqoDNHYCEKdsezqbwhnjvjSJMiqQqQAZSKWRt-vpEAGwiQDTYO31n46Tquk4zb6YxIXz4UYxYhMTNnGFTYPdfFF8lA03_lhbJyw21pUwNFhzjWZcieQ8RhKJdELI81_ILtgucS-TVZpse5Ev4ZLtJKtFNs-vit32CaZ-0T0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6Vh0Q58K4aoO0euHBwYmd3nfURqkSgJgEhg7hZu94xioSSygn8fmZsB4EQlXqzpZ2x5c-zMztPgJMCvbGx0QEpHxmovPCBk3TrXGSM6oYuLKqW-cPeeGzu75Prpli9qoVBxCr5DNt8WcXy_Sx_YldZh0-a3B9vBda0IkZ1udZr0ECpZkBeRDJMlsEyKhkmnfQubfOg8LbkuKGJ3mmhaqzKh724UjCD7f98tR3YaixJcVZDvwtfcLoHm2_6C-7Dw9n04RFFn8S4rlAUZKKKczYZiUiMLkdX4sZ6WwouJStFv84lFwM74Wx18TyxIqVzLhHxvsF9uokHu25pCXv7xXU5mZXzA7gd9NPfF0EzWSHIu0l3QcAo77XNCxl5o70KUXOJao90eUzwWKMilGHXofaI0jptk9D7ni5sTOZOjPIbrE5nU_wOQiuXG2diVUhUsTKWeIeR7REAPpfoWtBZfuksb9qO8_SLx6w6foRJRthkjE3WYNOC01eKv3XLjX-sPWAs3qyrYWjB8RLNrBHKeUYkiuikVIefkP2CjYt0NMyGl-M_R_CVn1SnrhzD6qJ8wh-wnj8vJvPyZ_XnvQCysdSE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angle+Estimation+for+Bistatic+MIMO+Radar+Under+Element+Failure+via+Tensor+Completion+With+Factor+Priors&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Chen%2C+Jinli&rft.au=Jiang%2C+Zhijun&rft.au=Zhu%2C+Xicheng&rft.au=Li%2C+Jiaqiang&rft.date=2023-12-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=72&rft.issue=12&rft.spage=15762&rft.epage=15775&rft_id=info:doi/10.1109%2FTVT.2023.3290181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2023_3290181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon