Angle Estimation for Bistatic MIMO Radar under Element Failure via Tensor Completion with Factor Priors
The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this paper, we consider the angle estimation problem for bistatic MIMO radar under element failure. To exploit the multidimensional structure, a covariance...
Uložené v:
| Vydané v: | IEEE transactions on vehicular technology Ročník 72; číslo 12; s. 1 - 14 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9545, 1939-9359 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this paper, we consider the angle estimation problem for bistatic MIMO radar under element failure. To exploit the multidimensional structure, a covariance tensor of the uniform linear array (ULA)-based MIMO radar is constructed, where some slices are entirely missing due to faults in the array elements. Then, recovering failed-element signals can be formulated as a low-rank tensor completion (LRTC) problem with structurally missing entries. To address this problem, we propose a novel tensor completion approach via CANDECOMP/PARAFAC decomposition with factor priors. The essence of the proposed method is to fully exploit not only the Vandermonde structure of factor matrices but also their correlations. To enforce these factor priors, we formulate an optimization problem that consists of an objective function penalizing the nuclear norm of block Hankel matrices formed by the factor matrices and the constraints to reveal the relationship among the factor matrices. To solve the optimization problem, we develop an algorithm based on the alternating direction method of multipliers (ADMM), thereby recovering the signals of failed elements. Finally, conventional algorithms yield robust angle estimation. Simulation results verify the effectiveness of the proposed algorithm for dealing with element failure. |
|---|---|
| AbstractList | The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this article, we consider the angle estimation problem for bistatic MIMO radar under element failure. To exploit the multidimensional structure, a covariance tensor of the uniform linear array (ULA)-based MIMO radar is constructed, where some slices are entirely missing due to faults in the array elements. Then, recovering failed-element signals can be formulated as a low-rank tensor completion (LRTC) problem with structurally missing entries. To address this problem, we propose a novel tensor completion approach via CANDECOMP/PARAFAC decomposition with factor priors. The essence of the proposed method is to fully exploit not only the Vandermonde structure of factor matrices but also their correlations. To enforce these factor priors, we formulate an optimization problem that consists of an objective function penalizing the nuclear norm of block Hankel matrices formed by the factor matrices and the constraints to reveal the relationship among the factor matrices. To solve the optimization problem, we develop an algorithm based on the alternating direction method of multipliers (ADMM), thereby recovering the signals of failed elements. Finally, conventional algorithms yield robust angle estimation. Simulation results verify the effectiveness of the proposed algorithm for dealing with element failure. The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this paper, we consider the angle estimation problem for bistatic MIMO radar under element failure. To exploit the multidimensional structure, a covariance tensor of the uniform linear array (ULA)-based MIMO radar is constructed, where some slices are entirely missing due to faults in the array elements. Then, recovering failed-element signals can be formulated as a low-rank tensor completion (LRTC) problem with structurally missing entries. To address this problem, we propose a novel tensor completion approach via CANDECOMP/PARAFAC decomposition with factor priors. The essence of the proposed method is to fully exploit not only the Vandermonde structure of factor matrices but also their correlations. To enforce these factor priors, we formulate an optimization problem that consists of an objective function penalizing the nuclear norm of block Hankel matrices formed by the factor matrices and the constraints to reveal the relationship among the factor matrices. To solve the optimization problem, we develop an algorithm based on the alternating direction method of multipliers (ADMM), thereby recovering the signals of failed elements. Finally, conventional algorithms yield robust angle estimation. Simulation results verify the effectiveness of the proposed algorithm for dealing with element failure. |
| Author | Chen, Jinli Jiang, Zhijun Li, Jiaqiang Zhu, Xicheng |
| Author_xml | – sequence: 1 givenname: Jinli orcidid: 0000-0002-4071-4388 surname: Chen fullname: Chen, Jinli organization: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 2 givenname: Zhijun surname: Jiang fullname: Jiang, Zhijun organization: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 3 givenname: Xicheng surname: Zhu fullname: Zhu, Xicheng organization: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 4 givenname: Jiaqiang surname: Li fullname: Li, Jiaqiang organization: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China |
| BookMark | eNp9kD1PwzAQhi1UJNrCzsBgiTnFH3ESj6VqoVIrEAqskRtfiqs0KbYD4t_jfgyIgel0p_e50z0D1GvaBhC6pmREKZF3-Vs-YoTxEWeS0IyeoT6VXEaSC9lDfRJmkRSxuEAD5zahjWNJ-2g9btY14KnzZqu8aRtctRbfG-dDV-LlfPmEX5RWFneNBounNWyh8XimTN1ZwJ9G4RwaF6BJu93VcNjxZfx7iJQ-jJ-taa27ROeVqh1cneoQvc6m-eQxWjw9zCfjRVQyyXyUsVhrocqKU50JHRMQCcuSVDCakBVRWUyBE7YCoQG4WgklidapqFTCUp4AH6Lb496dbT86cL7YtJ1twskieImDHM7jkCLHVGlb5yxUxc6G_-13QUmx11kEncVeZ3HSGZDkD1IafzDmbXDxH3hzBA0A_LpDkzSVhP8A7qyEFA |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1109_LSP_2024_3495555 crossref_primary_10_1016_j_sigpro_2025_110061 crossref_primary_10_1109_TAP_2025_3567446 crossref_primary_10_1109_JSEN_2024_3495989 |
| Cites_doi | 10.1109/8.774136 10.1109/ACCESS.2019.2912842 10.1049/el:20080276 10.2172/923081 10.1109/TWC.2019.2953059 10.1109/JSTSP.2009.2038971 10.1109/JSTSP.2018.2873990 10.1137/080738970 10.1109/TSP.2019.2912877 10.1109/TPAMI.2012.39 10.1109/AEMC.2015.7509130 10.1109/JSEN.2019.2906375 10.1109/ACCESS.2019.2949152 10.1109/ACCESS.2019.2959274 10.1109/TSP.2017.2690524 10.1145/2661829.2662083 10.1109/TSP.2021.3092363 10.1109/JSEN.2015.2399510 10.1109/TCYB.2014.2374695 10.1137/07070111X 10.1109/MSP.2008.4408448 10.1109/TIP.2017.2672439 10.1016/j.sigpro.2020.107517 10.1109/TSP.2017.2695566 10.1109/icspcc.2016.7753679 10.1109/TSP.2008.917929 10.1109/MAP.2017.2752683 10.1109/camsap.2015.7383801 10.1109/TVT.2021.3092355 10.1016/j.sigpro.2015.09.036 10.1109/TSP.2022.3176092 10.1109/ACCESS.2018.2810225 10.1109/TAP.2006.889794 10.1007/s10208-015-9269-5 10.1016/j.sigpro.2020.107650 10.1049/el:20089089 10.1109/JPROC.2009.2035722 10.1155/2008/973932 10.1016/j.sigpro.2016.12.017 10.1088/0266-5611/27/2/025010 10.1016/j.sigpro.2017.03.016 10.1561/2200000016 10.1109/LAWP.2018.2841650 10.1109/TAES.2020.3027103 10.1109/TSP.2004.832022 10.1007/s11760-019-01482-9 10.1080/00207217.2019.1570555 10.1109/TAP.2020.3045511 10.1109/TSP.2020.3047227 10.1109/LCOMM.2010.102610.101581 10.1109/TVT.2019.2957511 10.1016/j.sigpro.2020.107709 10.1109/MSP.2007.904812 10.1049/rsn2.12295 10.1109/TSP.2019.2912882 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2023.3290181 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TVT_2023_3290181 10167790 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province of China grantid: BK20191399; BK20160959 – fundername: National Natural Science Foundation of China grantid: 62071238; 61701249 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 3EH 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IFJZH VH1 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c292t-824dd5acf31d85d40e56286752160b0a841e302be5dee3ab5a90dd75fa62736e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001132470500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 08:35:38 EDT 2025 Sat Nov 29 02:59:09 EST 2025 Tue Nov 18 22:12:34 EST 2025 Wed Aug 27 02:56:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-824dd5acf31d85d40e56286752160b0a841e302be5dee3ab5a90dd75fa62736e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4071-4388 0009-0006-5229-361X |
| PQID | 2904329334 |
| PQPubID | 85454 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TVT_2023_3290181 proquest_journals_2904329334 crossref_citationtrail_10_1109_TVT_2023_3290181 ieee_primary_10167790 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 Lin (ref57) 2009 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 Wen (ref14) 2019; 106 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Rajih (ref56) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref23 doi: 10.1109/8.774136 – start-page: 1 volume-title: Proc. 13th Eur. Signal Process. Conf. ident: ref56 article-title: Enhanced line search: A novel method to accelerate PARAFAC – ident: ref16 doi: 10.1109/ACCESS.2019.2912842 – ident: ref11 doi: 10.1049/el:20080276 – ident: ref43 doi: 10.2172/923081 – ident: ref31 doi: 10.1109/TWC.2019.2953059 – ident: ref48 doi: 10.1109/JSTSP.2009.2038971 – ident: ref41 doi: 10.1109/JSTSP.2018.2873990 – ident: ref54 doi: 10.1137/080738970 – ident: ref22 doi: 10.1109/TSP.2019.2912877 – ident: ref37 doi: 10.1109/TPAMI.2012.39 – ident: ref28 doi: 10.1109/AEMC.2015.7509130 – ident: ref34 doi: 10.1109/JSEN.2019.2906375 – ident: ref13 doi: 10.1109/ACCESS.2019.2949152 – ident: ref32 doi: 10.1109/ACCESS.2019.2959274 – ident: ref45 doi: 10.1109/TSP.2017.2690524 – ident: ref53 doi: 10.1145/2661829.2662083 – ident: ref4 doi: 10.1109/TSP.2021.3092363 – ident: ref29 doi: 10.1109/JSEN.2015.2399510 – ident: ref38 doi: 10.1109/TCYB.2014.2374695 – ident: ref44 doi: 10.1137/07070111X – ident: ref2 doi: 10.1109/MSP.2008.4408448 – ident: ref40 doi: 10.1109/TIP.2017.2672439 – ident: ref20 doi: 10.1016/j.sigpro.2020.107517 – ident: ref42 doi: 10.1109/TSP.2017.2695566 – ident: ref27 doi: 10.1109/icspcc.2016.7753679 – ident: ref55 doi: 10.1109/TSP.2008.917929 – ident: ref18 doi: 10.1109/MAP.2017.2752683 – ident: ref30 doi: 10.1109/camsap.2015.7383801 – ident: ref6 doi: 10.1109/TVT.2021.3092355 – ident: ref46 doi: 10.1016/j.sigpro.2015.09.036 – ident: ref35 doi: 10.1109/TSP.2022.3176092 – ident: ref49 doi: 10.1109/ACCESS.2018.2810225 – ident: ref25 doi: 10.1109/TAP.2006.889794 – ident: ref39 doi: 10.1007/s10208-015-9269-5 – ident: ref7 doi: 10.1016/j.sigpro.2020.107650 – ident: ref12 doi: 10.1049/el:20089089 – ident: ref33 doi: 10.1109/JPROC.2009.2035722 – ident: ref9 doi: 10.1155/2008/973932 – ident: ref17 doi: 10.1016/j.sigpro.2016.12.017 – ident: ref36 doi: 10.1088/0266-5611/27/2/025010 – ident: ref47 doi: 10.1016/j.sigpro.2017.03.016 – ident: ref52 doi: 10.1561/2200000016 – year: 2009 ident: ref57 article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices – ident: ref50 doi: 10.1109/LAWP.2018.2841650 – ident: ref3 doi: 10.1109/TAES.2020.3027103 – ident: ref51 doi: 10.1109/TSP.2004.832022 – ident: ref24 doi: 10.1007/s11760-019-01482-9 – volume: 106 start-page: 816 issue: 6 year: 2019 ident: ref14 article-title: Low complexity 3D-OMP algorithms for DOD DOA and Doppler frequency estimation in bistatic MIMO radar publication-title: Int. J. Electron. doi: 10.1080/00207217.2019.1570555 – ident: ref19 doi: 10.1109/TAP.2020.3045511 – ident: ref8 doi: 10.1109/TSP.2020.3047227 – ident: ref10 doi: 10.1109/LCOMM.2010.102610.101581 – ident: ref15 doi: 10.1109/TVT.2019.2957511 – ident: ref5 doi: 10.1016/j.sigpro.2020.107709 – ident: ref1 doi: 10.1109/MSP.2007.904812 – ident: ref26 doi: 10.1049/rsn2.12295 – ident: ref21 doi: 10.1109/TSP.2019.2912882 |
| SSID | ssj0014491 |
| Score | 2.4416509 |
| Snippet | The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this paper, we... The presence of element failure results in an inevitable performance loss in angle estimation in multiple-input multiple-output (MIMO) radar. In this article,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms angle estimation Antenna arrays array element failure Arrays CANDECOMP/PARAFAC decomposition Covariance matrices Estimation factor priors Failure Hankel matrices Linear arrays Mathematical analysis MIMO communication MIMO radar Multistatic radar Optimization Radar antennas Radar arrays tensor completion Tensors |
| Title | Angle Estimation for Bistatic MIMO Radar under Element Failure via Tensor Completion with Factor Priors |
| URI | https://ieeexplore.ieee.org/document/10167790 https://www.proquest.com/docview/2904329334 |
| Volume | 72 |
| WOSCitedRecordID | wos001132470500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6seNCDz4rVKnvw4iFt0t0km6NKi4LWIlV6C7vZSQmUVtLH73cmSaUiCt4S2BlCvp2dmZ0XY9cpWKUD5TuofIQjk9Q6RuCrMZ5SsuMaNy1a5j-F_b4ajaJBVaxe1MIAQJF8Bi16LGL5dpYs6aqsTZ4m9cersVoYBmWx1lfIQMpqPJ6HEox2wTom6Ubt4fuwRWPCW4Kihsr7poOKoSo_TuJCvfQO_vlhh2y_siP5bQn8EduC6THb2-gueMLGt9PxBHgXhbisT-RooPI7MhiRiD8_Pr_wV211zqmQLOfdMpOc93RGuep8lWk-RC8XiejUoC7dyIMubnEJ3fXzQZ7N8nmdvfW6w_sHp5qr4CSdqLNAWKS1vk5S4VnlW-mCTwWqIWryAMHRSnog3I4B3wIIbXwdudaGfqoDNHYCEKdsezqbwhnjvjSJMiqQqQAZSKWRt-vpEAGwiQDTYO31n46Tquk4zb6YxIXz4UYxYhMTNnGFTYPdfFF8lA03_lhbJyw21pUwNFhzjWZcieQ8RhKJdELI81_ILtgucS-TVZpse5Ev4ZLtJKtFNs-vit32CaZ-0T0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6Vh0Q58K4aoO0euHBwYmd3nfURqkSgJgEhg7hZu94xioSSygn8fmZsB4EQlXqzpZ2x5c-zMztPgJMCvbGx0QEpHxmovPCBk3TrXGSM6oYuLKqW-cPeeGzu75Prpli9qoVBxCr5DNt8WcXy_Sx_YldZh0-a3B9vBda0IkZ1udZr0ECpZkBeRDJMlsEyKhkmnfQubfOg8LbkuKGJ3mmhaqzKh724UjCD7f98tR3YaixJcVZDvwtfcLoHm2_6C-7Dw9n04RFFn8S4rlAUZKKKczYZiUiMLkdX4sZ6WwouJStFv84lFwM74Wx18TyxIqVzLhHxvsF9uokHu25pCXv7xXU5mZXzA7gd9NPfF0EzWSHIu0l3QcAo77XNCxl5o70KUXOJao90eUzwWKMilGHXofaI0jptk9D7ni5sTOZOjPIbrE5nU_wOQiuXG2diVUhUsTKWeIeR7REAPpfoWtBZfuksb9qO8_SLx6w6foRJRthkjE3WYNOC01eKv3XLjX-sPWAs3qyrYWjB8RLNrBHKeUYkiuikVIefkP2CjYt0NMyGl-M_R_CVn1SnrhzD6qJ8wh-wnj8vJvPyZ_XnvQCysdSE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angle+Estimation+for+Bistatic+MIMO+Radar+Under+Element+Failure+via+Tensor+Completion+With+Factor+Priors&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Chen%2C+Jinli&rft.au=Jiang%2C+Zhijun&rft.au=Zhu%2C+Xicheng&rft.au=Li%2C+Jiaqiang&rft.date=2023-12-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=72&rft.issue=12&rft.spage=15762&rft.epage=15775&rft_id=info:doi/10.1109%2FTVT.2023.3290181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2023_3290181 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |