Measurable cones and stable, measurable functions: a model for probabilistic higher-order programming

We define a notion of stable and measurable map between cones endowed with measurability tests and show that it forms a cpo-enriched cartesian closed category. This category gives a denotational model of an extension of PCF supporting the main primitives of probabilistic functional programming, like...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of ACM on programming languages Ročník 2; číslo POPL; s. 1 - 28
Hlavní autoři: Ehrhard, Thomas, Pagani, Michele, Tasson, Christine
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.01.2018
ISSN:2475-1421, 2475-1421
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We define a notion of stable and measurable map between cones endowed with measurability tests and show that it forms a cpo-enriched cartesian closed category. This category gives a denotational model of an extension of PCF supporting the main primitives of probabilistic functional programming, like continuous and discrete probabilistic distributions, sampling, conditioning and full recursion. We prove the soundness and adequacy of this model with respect to a call-by-name operational semantics and give some examples of its denotations.
ISSN:2475-1421
2475-1421
DOI:10.1145/3158147