An Interpretable Constructive Algorithm for Incremental Random Weight Neural Networks and Its Application

In this article, we aim to offer an interpretable learning paradigm for incremental random weight neural networks (IRWNNs). IRWNNs have become a hot research direction of neural network algorithms due to their ease of deployment and fast learning speed. However, existing IRWNNs have difficulty expla...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 20; číslo 12; s. 13622 - 13632
Hlavní autoři: Nan, Jing, Dai, Wei, Yuan, Guan, Zhou, Ping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, we aim to offer an interpretable learning paradigm for incremental random weight neural networks (IRWNNs). IRWNNs have become a hot research direction of neural network algorithms due to their ease of deployment and fast learning speed. However, existing IRWNNs have difficulty explaining how hidden nodes (parameters) affect the convergence of network residuals. To address this gap, this article proposes an interpretable construction algorithm (ICA). Specifically, we first conduct a spatial geometric analysis of the network construction process and establish the spatial geometric relationship between the network residuals and hidden parameters to visualize the influence of hidden parameters on the convergence of the network residuals. Second, based on the spatial geometric relationship and node pool strategy, an interpretable control strategy with spatial geometry information is established to obtain hidden parameters conducive to the convergence of network residuals. In addition, to facilitate ICA to handle complex tasks of big data, this article proposes a lightweight ICA with low complexity, namely ICA+. Finally, it is proved theoretically that the ICA and ICA+ proposed in this article have universal approximation properties. The experimental results on two real-world datasets and seven benchmark datasets demonstrate the advantages of the proposed ICA and ICA+ in terms of fast learning, good generalization, and compactness of network structure.
AbstractList In this article, we aim to offer an interpretable learning paradigm for incremental random weight neural networks (IRWNNs). IRWNNs have become a hot research direction of neural network algorithms due to their ease of deployment and fast learning speed. However, existing IRWNNs have difficulty explaining how hidden nodes (parameters) affect the convergence of network residuals. To address this gap, this article proposes an interpretable construction algorithm (ICA). Specifically, we first conduct a spatial geometric analysis of the network construction process and establish the spatial geometric relationship between the network residuals and hidden parameters to visualize the influence of hidden parameters on the convergence of the network residuals. Second, based on the spatial geometric relationship and node pool strategy, an interpretable control strategy with spatial geometry information is established to obtain hidden parameters conducive to the convergence of network residuals. In addition, to facilitate ICA to handle complex tasks of big data, this article proposes a lightweight ICA with low complexity, namely ICA+. Finally, it is proved theoretically that the ICA and ICA+ proposed in this article have universal approximation properties. The experimental results on two real-world datasets and seven benchmark datasets demonstrate the advantages of the proposed ICA and ICA+ in terms of fast learning, good generalization, and compactness of network structure.
Author Yuan, Guan
Zhou, Ping
Nan, Jing
Dai, Wei
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0003-3944-5616
  surname: Nan
  fullname: Nan, Jing
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0003-3057-7225
  surname: Dai
  fullname: Dai, Wei
  email: weidai@cumt.edu.cn
  organization: School of Information and Control Engineering, School of Computer Science and Technology, Digitization of Mine, Engineering Research Center of Ministry of Education, China University of Mining and Technology, Xuzhou, China
– sequence: 3
  givenname: Guan
  orcidid: 0000-0003-3148-9817
  surname: Yuan
  fullname: Yuan, Guan
  organization: School of Information and Control Engineering, School of Computer Science and Technology, Digitization of Mine, Engineering Research Center of Ministry of Education, China University of Mining and Technology, Xuzhou, China
– sequence: 4
  givenname: Ping
  orcidid: 0000-0002-9398-172X
  surname: Zhou
  fullname: Zhou, Ping
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
BookMark eNp9kMtLBDEMxoso-Lx78FDwPGv6mOnMcVl8DIiCKB6Hbjej1dl2bLuK_71d14N48JKE5Pcl4dsn2847JOSYwYQxaM7u23bCgcuJkFzIWm2RPdZIVgCUsJ3rsmSF4CB2yX6MLwBCgWj2iJ062rqEYQyY9HxAOvMuprAyyb4jnQ5PPtj0vKS9Dxk0AZfokh7onXYLv6SPaJ-eE73BVcjNG0wfPrxGmoe0TZFOx3GwRifr3SHZ6fUQ8egnH5CHi_P72VVxfXvZzqbXheENT0XNDEcJCLXpseQl1rXgcy6VwQXnAkS9YMpIrGoNWAH0cq6RzXPsG6lqJg7I6WbvGPzbCmPqXvwquHyyE0yyiimhykxVG8oEH2PAvjM2ff-ZgrZDx6Bb29plW7u1rd2PrVkIf4RjsEsdPv-TnGwkFhF_4ZVqylKJL3WxhZs
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_TASE_2025_3574174
crossref_primary_10_1016_j_compeleceng_2025_110178
Cites_doi 10.1109/TII.2021.3067344
10.1109/72.623214
10.1109/IJCNN.2018.8489695
10.1109/TNNLS.2013.2294437
10.1016/j.neucom.2016.09.092
10.1109/CCA.2009.5281061
10.1016/j.ins.2018.09.026
10.1109/TNN.2009.2024147
10.1109/TCYB.2017.2734043
10.1109/TPAMI.2021.3127346
10.1016/j.neunet.2013.01.008
10.1109/TFUZZ.2019.2917124
10.1016/j.ins.2018.12.063
10.1109/JSEN.2020.3014276
10.1016/j.ins.2017.05.047
10.1109/TCDS.2019.2918228
10.1016/0925-2312(94)90053-1
10.1016/j.ins.2016.12.007
10.1109/TPAMI.2022.3194044
10.1016/j.ins.2019.02.066
10.1109/TII.2021.3096840
10.1109/TCYB.2019.2925883
10.1007/11759966_95
10.1016/j.neucom.2011.12.062
10.1038/nature14539
10.1016/j.patcog.2005.03.028
10.1109/TII.2021.3116528
10.1109/2.144401
10.1109/72.471375
10.1109/TSMC.2020.2969686
10.1109/IJCNN.2008.4633951
10.1017/CBO9780511801389
10.1109/TMAG.2021.3063141
10.1109/TNNLS.2017.2716952
10.1109/TII.2021.3086798
10.1109/TCYB.2016.2574198
10.1016/j.neunet.2004.02.002
10.1016/j.knosys.2018.05.021
10.1109/TII.2019.2902129
10.1109/TNN.2004.836233
10.1109/TNNLS.2014.2350957
10.1109/3477.740166
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2024.3423487
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 13632
ExternalDocumentID 10_1109_TII_2024_3423487
10679557
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62373361
  funderid: 10.13039/501100001809
– fundername: State Scholarship Fund, China Scholarship Council
  grantid: 202306420127
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20240102
  funderid: 10.13039/501100004608
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-81c2e40e08cfe525e8832b247ced223038d17c4e68a0e600f4bae1b4baf947813
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001313358400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:23:57 EDT 2025
Sat Nov 29 04:17:14 EST 2025
Tue Nov 18 22:17:18 EST 2025
Wed Aug 27 02:26:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-81c2e40e08cfe525e8832b247ced223038d17c4e68a0e600f4bae1b4baf947813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9398-172X
0000-0003-3148-9817
0000-0003-3944-5616
0000-0003-3057-7225
PQID 3141617375
PQPubID 85507
PageCount 11
ParticipantIDs ieee_primary_10679557
crossref_citationtrail_10_1109_TII_2024_3423487
proquest_journals_3141617375
crossref_primary_10_1109_TII_2024_3423487
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
(ref39) 1987
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref45
ref26
(ref42) 2023
ref25
ref20
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Derrac (ref38) 2011; 17
ref40
References_xml – ident: ref30
  doi: 10.1109/TII.2021.3067344
– ident: ref14
  doi: 10.1109/72.623214
– ident: ref29
  doi: 10.1109/IJCNN.2018.8489695
– ident: ref5
  doi: 10.1109/TNNLS.2013.2294437
– ident: ref19
  doi: 10.1016/j.neucom.2016.09.092
– ident: ref21
  doi: 10.1109/CCA.2009.5281061
– ident: ref26
  doi: 10.1016/j.ins.2018.09.026
– ident: ref13
  doi: 10.1109/TNN.2009.2024147
– ident: ref23
  doi: 10.1109/TCYB.2017.2734043
– ident: ref45
  doi: 10.1109/TPAMI.2021.3127346
– ident: ref44
  doi: 10.1016/j.neunet.2013.01.008
– ident: ref32
  doi: 10.1109/TFUZZ.2019.2917124
– ident: ref31
  doi: 10.1016/j.ins.2018.12.063
– ident: ref41
  doi: 10.1109/JSEN.2020.3014276
– ident: ref27
  doi: 10.1016/j.ins.2017.05.047
– ident: ref36
  doi: 10.1109/TCDS.2019.2918228
– ident: ref8
  doi: 10.1016/0925-2312(94)90053-1
– volume: 17
  start-page: 255
  year: 2011
  ident: ref38
  article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Mult.-Valued Log. Soft. Comput.
– ident: ref24
  doi: 10.1016/j.ins.2016.12.007
– ident: ref6
  doi: 10.1109/TPAMI.2022.3194044
– ident: ref25
  doi: 10.1016/j.ins.2019.02.066
– ident: ref40
  doi: 10.1109/TII.2021.3096840
– ident: ref28
  doi: 10.1109/TCYB.2019.2925883
– year: 2023
  ident: ref42
  article-title: Sequence classification using 1-D convolutions
– ident: ref20
  doi: 10.1007/11759966_95
– ident: ref17
  doi: 10.1016/j.neucom.2011.12.062
– ident: ref4
  doi: 10.1038/nature14539
– ident: ref18
  doi: 10.1016/j.patcog.2005.03.028
– ident: ref1
  doi: 10.1109/TII.2021.3116528
– ident: ref7
  doi: 10.1109/2.144401
– ident: ref9
  doi: 10.1109/72.471375
– ident: ref35
  doi: 10.1109/TSMC.2020.2969686
– ident: ref16
  doi: 10.1109/IJCNN.2008.4633951
– ident: ref43
  doi: 10.1017/CBO9780511801389
– ident: ref33
  doi: 10.1109/TMAG.2021.3063141
– ident: ref34
  doi: 10.1109/TNNLS.2017.2716952
– ident: ref2
  doi: 10.1109/TII.2021.3086798
– ident: ref10
  doi: 10.1109/TCYB.2016.2574198
– ident: ref12
  doi: 10.1016/j.neunet.2004.02.002
– ident: ref15
  doi: 10.1016/j.knosys.2018.05.021
– ident: ref3
  doi: 10.1109/TII.2019.2902129
– ident: ref22
  doi: 10.1109/TNN.2004.836233
– ident: ref11
  doi: 10.1109/TNNLS.2014.2350957
– ident: ref37
  doi: 10.1109/3477.740166
– year: 1987
  ident: ref39
  article-title: UC Irvine machine learning repository
SSID ssj0037039
Score 2.4388957
Snippet In this article, we aim to offer an interpretable learning paradigm for incremental random weight neural networks (IRWNNs). IRWNNs have become a hot research...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13622
SubjectTerms Algorithms
Artificial neural networks
Convergence
Data modeling
Datasets
Geometry
Informatics
interpretable constructive algorithm
Machine learning
Mathematical models
Network architecture
Neural networks
neural networks (NNs)
Parameters
random algorithms
Reviews
spatial geometric information
Task complexity
Title An Interpretable Constructive Algorithm for Incremental Random Weight Neural Networks and Its Application
URI https://ieeexplore.ieee.org/document/10679557
https://www.proquest.com/docview/3141617375
Volume 20
WOSCitedRecordID wos001313358400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-EeNCDnxhRND148TDo-kG7IzESuRBjMHJb1vKmJLgZQP5--zGExGjiZVm2tln268evr-_9HkI3XWqM5Wwm0rrLIm5iGmUUSCS50MrOhpakhGQTcjhU43HyWAWr-1gYAPDOZ9B2t_4sf1KaT2cq6zi5s0QIWUM1KbshWGs97TLbdRMvjiriiFHC1meSJOmMBgO7E6S87eTuuPOe21qDfFKVHzOxX176h__8sCN0UPFI3AvAH6MdKE7Q_pa64Cma9gq88SnUM8AuO2fQi10B7s1ey_l0-faOLW-1BU2wFNpGn7JiUr7jF281xU6-wz4cBn_xBbYv8WC5wL3N0XcDPffvR3cPUZVZITI0octIxYYCJ0CUyUFQAcoObE25NDCxfIEwNYml4dBVGQFLiXKuM4i1veaJi01lZ6helAWcI-yWeOFog9Q5z7lQQB2nyZjOFHBOmqiz_tepqWTHXfaLWeq3HyRJLTqpQyet0Gmi2-8aH0Fy44-yDYfGVrkARBO11nim1aBcpCz2uzkmxcUv1S7Rnms9uKu0UN1CAldo16yW08X82ve3L_it0cg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH64gXpwF-s6By8eYiezNJNjEaVFLSIVvYXM9EULNRVb-_udJdWCKHgJIZlJQr5Zvjfz3vcAThvMGMvZTKR1g0fCxCzKGdIoEVIrOxpakhKSTSSdjnp6Su-qYHUfC4OI3vkMz92p38vvDc2HWyqrO7mzVMpkHhalEIyGcK3pwMtt4029PKqMI84on-5K0rTebbetLcjEuRO8E85_bmYW8mlVfozFfoK5Wv_np23AWsUkSTNAvwlzWG7B6oy-4Db0myX59irUAyQuP2dQjJ0gaQ6eh-_98csrsczVFjRhrdA-9D4ve8NX8ujXTYkT8LAXO8FjfETsTdIej0jze_N7Bx6uLrsXrajKrRAZlrJxpGLDUFCkyhQomURlu7ZmIjHYs4yBctWLEyOwoXKKlhQVQucYa3ssUhedyndhoRyWuAfETfLSEYdEF6IQUiFzrCbnOlcoBK1BffqvM1MJj7v8F4PMGyA0zSw6mUMnq9CpwdlXjbcguvFH2R2Hxky5AEQNDqd4ZlW3HGU89vYcT-T-L9VOYLnVvb3Jbtqd6wNYcW8KziuHsGDhwSNYMpNxf_R-7NveJwr91Q8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Interpretable+Constructive+Algorithm+for+Incremental+Random+Weight+Neural+Networks+and+Its+Application&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Jing%2C+Nan&rft.au=Dai%2C+Wei&rft.au=Guan+Yuan&rft.au=Zhou%2C+Ping&rft.date=2024-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=20&rft.issue=12&rft.spage=13622&rft_id=info:doi/10.1109%2FTII.2024.3423487&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon