An Interpretable Constructive Algorithm for Incremental Random Weight Neural Networks and Its Application
In this article, we aim to offer an interpretable learning paradigm for incremental random weight neural networks (IRWNNs). IRWNNs have become a hot research direction of neural network algorithms due to their ease of deployment and fast learning speed. However, existing IRWNNs have difficulty expla...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial informatics Ročník 20; číslo 12; s. 13622 - 13632 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, we aim to offer an interpretable learning paradigm for incremental random weight neural networks (IRWNNs). IRWNNs have become a hot research direction of neural network algorithms due to their ease of deployment and fast learning speed. However, existing IRWNNs have difficulty explaining how hidden nodes (parameters) affect the convergence of network residuals. To address this gap, this article proposes an interpretable construction algorithm (ICA). Specifically, we first conduct a spatial geometric analysis of the network construction process and establish the spatial geometric relationship between the network residuals and hidden parameters to visualize the influence of hidden parameters on the convergence of the network residuals. Second, based on the spatial geometric relationship and node pool strategy, an interpretable control strategy with spatial geometry information is established to obtain hidden parameters conducive to the convergence of network residuals. In addition, to facilitate ICA to handle complex tasks of big data, this article proposes a lightweight ICA with low complexity, namely ICA+. Finally, it is proved theoretically that the ICA and ICA+ proposed in this article have universal approximation properties. The experimental results on two real-world datasets and seven benchmark datasets demonstrate the advantages of the proposed ICA and ICA+ in terms of fast learning, good generalization, and compactness of network structure. |
|---|---|
| AbstractList | In this article, we aim to offer an interpretable learning paradigm for incremental random weight neural networks (IRWNNs). IRWNNs have become a hot research direction of neural network algorithms due to their ease of deployment and fast learning speed. However, existing IRWNNs have difficulty explaining how hidden nodes (parameters) affect the convergence of network residuals. To address this gap, this article proposes an interpretable construction algorithm (ICA). Specifically, we first conduct a spatial geometric analysis of the network construction process and establish the spatial geometric relationship between the network residuals and hidden parameters to visualize the influence of hidden parameters on the convergence of the network residuals. Second, based on the spatial geometric relationship and node pool strategy, an interpretable control strategy with spatial geometry information is established to obtain hidden parameters conducive to the convergence of network residuals. In addition, to facilitate ICA to handle complex tasks of big data, this article proposes a lightweight ICA with low complexity, namely ICA+. Finally, it is proved theoretically that the ICA and ICA+ proposed in this article have universal approximation properties. The experimental results on two real-world datasets and seven benchmark datasets demonstrate the advantages of the proposed ICA and ICA+ in terms of fast learning, good generalization, and compactness of network structure. |
| Author | Yuan, Guan Zhou, Ping Nan, Jing Dai, Wei |
| Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0003-3944-5616 surname: Nan fullname: Nan, Jing organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 2 givenname: Wei orcidid: 0000-0003-3057-7225 surname: Dai fullname: Dai, Wei email: weidai@cumt.edu.cn organization: School of Information and Control Engineering, School of Computer Science and Technology, Digitization of Mine, Engineering Research Center of Ministry of Education, China University of Mining and Technology, Xuzhou, China – sequence: 3 givenname: Guan orcidid: 0000-0003-3148-9817 surname: Yuan fullname: Yuan, Guan organization: School of Information and Control Engineering, School of Computer Science and Technology, Digitization of Mine, Engineering Research Center of Ministry of Education, China University of Mining and Technology, Xuzhou, China – sequence: 4 givenname: Ping orcidid: 0000-0002-9398-172X surname: Zhou fullname: Zhou, Ping organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| BookMark | eNp9kMtLBDEMxoso-Lx78FDwPGv6mOnMcVl8DIiCKB6Hbjej1dl2bLuK_71d14N48JKE5Pcl4dsn2847JOSYwYQxaM7u23bCgcuJkFzIWm2RPdZIVgCUsJ3rsmSF4CB2yX6MLwBCgWj2iJ062rqEYQyY9HxAOvMuprAyyb4jnQ5PPtj0vKS9Dxk0AZfokh7onXYLv6SPaJ-eE73BVcjNG0wfPrxGmoe0TZFOx3GwRifr3SHZ6fUQ8egnH5CHi_P72VVxfXvZzqbXheENT0XNDEcJCLXpseQl1rXgcy6VwQXnAkS9YMpIrGoNWAH0cq6RzXPsG6lqJg7I6WbvGPzbCmPqXvwquHyyE0yyiimhykxVG8oEH2PAvjM2ff-ZgrZDx6Bb29plW7u1rd2PrVkIf4RjsEsdPv-TnGwkFhF_4ZVqylKJL3WxhZs |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1109_TASE_2025_3574174 crossref_primary_10_1016_j_compeleceng_2025_110178 |
| Cites_doi | 10.1109/TII.2021.3067344 10.1109/72.623214 10.1109/IJCNN.2018.8489695 10.1109/TNNLS.2013.2294437 10.1016/j.neucom.2016.09.092 10.1109/CCA.2009.5281061 10.1016/j.ins.2018.09.026 10.1109/TNN.2009.2024147 10.1109/TCYB.2017.2734043 10.1109/TPAMI.2021.3127346 10.1016/j.neunet.2013.01.008 10.1109/TFUZZ.2019.2917124 10.1016/j.ins.2018.12.063 10.1109/JSEN.2020.3014276 10.1016/j.ins.2017.05.047 10.1109/TCDS.2019.2918228 10.1016/0925-2312(94)90053-1 10.1016/j.ins.2016.12.007 10.1109/TPAMI.2022.3194044 10.1016/j.ins.2019.02.066 10.1109/TII.2021.3096840 10.1109/TCYB.2019.2925883 10.1007/11759966_95 10.1016/j.neucom.2011.12.062 10.1038/nature14539 10.1016/j.patcog.2005.03.028 10.1109/TII.2021.3116528 10.1109/2.144401 10.1109/72.471375 10.1109/TSMC.2020.2969686 10.1109/IJCNN.2008.4633951 10.1017/CBO9780511801389 10.1109/TMAG.2021.3063141 10.1109/TNNLS.2017.2716952 10.1109/TII.2021.3086798 10.1109/TCYB.2016.2574198 10.1016/j.neunet.2004.02.002 10.1016/j.knosys.2018.05.021 10.1109/TII.2019.2902129 10.1109/TNN.2004.836233 10.1109/TNNLS.2014.2350957 10.1109/3477.740166 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2024.3423487 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 13632 |
| ExternalDocumentID | 10_1109_TII_2024_3423487 10679557 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62373361 funderid: 10.13039/501100001809 – fundername: State Scholarship Fund, China Scholarship Council grantid: 202306420127 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20240102 funderid: 10.13039/501100004608 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-81c2e40e08cfe525e8832b247ced223038d17c4e68a0e600f4bae1b4baf947813 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001313358400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:23:57 EDT 2025 Sat Nov 29 04:17:14 EST 2025 Tue Nov 18 22:17:18 EST 2025 Wed Aug 27 02:26:52 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-81c2e40e08cfe525e8832b247ced223038d17c4e68a0e600f4bae1b4baf947813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9398-172X 0000-0003-3148-9817 0000-0003-3944-5616 0000-0003-3057-7225 |
| PQID | 3141617375 |
| PQPubID | 85507 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10679557 crossref_citationtrail_10_1109_TII_2024_3423487 proquest_journals_3141617375 crossref_primary_10_1109_TII_2024_3423487 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 (ref39) 1987 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref45 ref26 (ref42) 2023 ref25 ref20 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Derrac (ref38) 2011; 17 ref40 |
| References_xml | – ident: ref30 doi: 10.1109/TII.2021.3067344 – ident: ref14 doi: 10.1109/72.623214 – ident: ref29 doi: 10.1109/IJCNN.2018.8489695 – ident: ref5 doi: 10.1109/TNNLS.2013.2294437 – ident: ref19 doi: 10.1016/j.neucom.2016.09.092 – ident: ref21 doi: 10.1109/CCA.2009.5281061 – ident: ref26 doi: 10.1016/j.ins.2018.09.026 – ident: ref13 doi: 10.1109/TNN.2009.2024147 – ident: ref23 doi: 10.1109/TCYB.2017.2734043 – ident: ref45 doi: 10.1109/TPAMI.2021.3127346 – ident: ref44 doi: 10.1016/j.neunet.2013.01.008 – ident: ref32 doi: 10.1109/TFUZZ.2019.2917124 – ident: ref31 doi: 10.1016/j.ins.2018.12.063 – ident: ref41 doi: 10.1109/JSEN.2020.3014276 – ident: ref27 doi: 10.1016/j.ins.2017.05.047 – ident: ref36 doi: 10.1109/TCDS.2019.2918228 – ident: ref8 doi: 10.1016/0925-2312(94)90053-1 – volume: 17 start-page: 255 year: 2011 ident: ref38 article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J. Mult.-Valued Log. Soft. Comput. – ident: ref24 doi: 10.1016/j.ins.2016.12.007 – ident: ref6 doi: 10.1109/TPAMI.2022.3194044 – ident: ref25 doi: 10.1016/j.ins.2019.02.066 – ident: ref40 doi: 10.1109/TII.2021.3096840 – ident: ref28 doi: 10.1109/TCYB.2019.2925883 – year: 2023 ident: ref42 article-title: Sequence classification using 1-D convolutions – ident: ref20 doi: 10.1007/11759966_95 – ident: ref17 doi: 10.1016/j.neucom.2011.12.062 – ident: ref4 doi: 10.1038/nature14539 – ident: ref18 doi: 10.1016/j.patcog.2005.03.028 – ident: ref1 doi: 10.1109/TII.2021.3116528 – ident: ref7 doi: 10.1109/2.144401 – ident: ref9 doi: 10.1109/72.471375 – ident: ref35 doi: 10.1109/TSMC.2020.2969686 – ident: ref16 doi: 10.1109/IJCNN.2008.4633951 – ident: ref43 doi: 10.1017/CBO9780511801389 – ident: ref33 doi: 10.1109/TMAG.2021.3063141 – ident: ref34 doi: 10.1109/TNNLS.2017.2716952 – ident: ref2 doi: 10.1109/TII.2021.3086798 – ident: ref10 doi: 10.1109/TCYB.2016.2574198 – ident: ref12 doi: 10.1016/j.neunet.2004.02.002 – ident: ref15 doi: 10.1016/j.knosys.2018.05.021 – ident: ref3 doi: 10.1109/TII.2019.2902129 – ident: ref22 doi: 10.1109/TNN.2004.836233 – ident: ref11 doi: 10.1109/TNNLS.2014.2350957 – ident: ref37 doi: 10.1109/3477.740166 – year: 1987 ident: ref39 article-title: UC Irvine machine learning repository |
| SSID | ssj0037039 |
| Score | 2.4388957 |
| Snippet | In this article, we aim to offer an interpretable learning paradigm for incremental random weight neural networks (IRWNNs). IRWNNs have become a hot research... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13622 |
| SubjectTerms | Algorithms Artificial neural networks Convergence Data modeling Datasets Geometry Informatics interpretable constructive algorithm Machine learning Mathematical models Network architecture Neural networks neural networks (NNs) Parameters random algorithms Reviews spatial geometric information Task complexity |
| Title | An Interpretable Constructive Algorithm for Incremental Random Weight Neural Networks and Its Application |
| URI | https://ieeexplore.ieee.org/document/10679557 https://www.proquest.com/docview/3141617375 |
| Volume | 20 |
| WOSCitedRecordID | wos001313358400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-EeNCDnxhRND148TDo-kG7IzESuRBjMHJb1vKmJLgZQP5--zGExGjiZVm2tln268evr-_9HkI3XWqM5Wwm0rrLIm5iGmUUSCS50MrOhpakhGQTcjhU43HyWAWr-1gYAPDOZ9B2t_4sf1KaT2cq6zi5s0QIWUM1KbshWGs97TLbdRMvjiriiFHC1meSJOmMBgO7E6S87eTuuPOe21qDfFKVHzOxX176h__8sCN0UPFI3AvAH6MdKE7Q_pa64Cma9gq88SnUM8AuO2fQi10B7s1ey_l0-faOLW-1BU2wFNpGn7JiUr7jF281xU6-wz4cBn_xBbYv8WC5wL3N0XcDPffvR3cPUZVZITI0octIxYYCJ0CUyUFQAcoObE25NDCxfIEwNYml4dBVGQFLiXKuM4i1veaJi01lZ6helAWcI-yWeOFog9Q5z7lQQB2nyZjOFHBOmqiz_tepqWTHXfaLWeq3HyRJLTqpQyet0Gmi2-8aH0Fy44-yDYfGVrkARBO11nim1aBcpCz2uzkmxcUv1S7Rnms9uKu0UN1CAldo16yW08X82ve3L_it0cg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH64gXpwF-s6By8eYiezNJNjEaVFLSIVvYXM9EULNRVb-_udJdWCKHgJIZlJQr5Zvjfz3vcAThvMGMvZTKR1g0fCxCzKGdIoEVIrOxpakhKSTSSdjnp6Su-qYHUfC4OI3vkMz92p38vvDc2HWyqrO7mzVMpkHhalEIyGcK3pwMtt4029PKqMI84on-5K0rTebbetLcjEuRO8E85_bmYW8mlVfozFfoK5Wv_np23AWsUkSTNAvwlzWG7B6oy-4Db0myX59irUAyQuP2dQjJ0gaQ6eh-_98csrsczVFjRhrdA-9D4ve8NX8ujXTYkT8LAXO8FjfETsTdIej0jze_N7Bx6uLrsXrajKrRAZlrJxpGLDUFCkyhQomURlu7ZmIjHYs4yBctWLEyOwoXKKlhQVQucYa3ssUhedyndhoRyWuAfETfLSEYdEF6IQUiFzrCbnOlcoBK1BffqvM1MJj7v8F4PMGyA0zSw6mUMnq9CpwdlXjbcguvFH2R2Hxky5AEQNDqd4ZlW3HGU89vYcT-T-L9VOYLnVvb3Jbtqd6wNYcW8KziuHsGDhwSNYMpNxf_R-7NveJwr91Q8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Interpretable+Constructive+Algorithm+for+Incremental+Random+Weight+Neural+Networks+and+Its+Application&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Jing%2C+Nan&rft.au=Dai%2C+Wei&rft.au=Guan+Yuan&rft.au=Zhou%2C+Ping&rft.date=2024-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=20&rft.issue=12&rft.spage=13622&rft_id=info:doi/10.1109%2FTII.2024.3423487&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |