Robust Convex Model Predictive Control for Quadruped Locomotion Under Uncertainties

This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on robotics Ročník 39; číslo 6; s. 1 - 18
Hlavní autori: Xu, Shaohang, Zhu, Lijun, Zhang, Hai-Tao, Ho, Chin Pang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1552-3098, 1941-0468
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust min-max model predictive controller is proposed by recurrently solving the optimization model. We prove that the min-max optimization model is equivalent to a convex quadratic constrained quadratic program by exploiting the structure of uncertainties. Moreover, a two-stage optimization algorithm is proposed to solve the optimization problem efficiently, allowing for the deployment of the controller onto the real robot. The results show that the proposed optimization algorithm can improve solving frequency by <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>11× compared with Gurobi. The proposed controller is able to stabilize quadruped locomotion in challenging scenarios where the uncertainties are caused by significant disturbances and unknown environments.
AbstractList This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust min-max model predictive controller is proposed by recurrently solving the optimization model. We prove that the min-max optimization model is equivalent to a convex quadratic constrained quadratic program by exploiting the structure of uncertainties. Moreover, a two-stage optimization algorithm is proposed to solve the optimization problem efficiently, allowing for the deployment of the controller onto the real robot. The results show that the proposed optimization algorithm can improve solving frequency by <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>11× compared with Gurobi. The proposed controller is able to stabilize quadruped locomotion in challenging scenarios where the uncertainties are caused by significant disturbances and unknown environments.
This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust min-max model predictive controller is proposed by recurrently solving the optimization model. We prove that the min-max optimization model is equivalent to a convex quadratic constrained quadratic program by exploiting the structure of uncertainties. Moreover, a two-stage optimization algorithm is proposed to solve the optimization problem efficiently, allowing for the deployment of the controller onto the real robot. The results show that the proposed optimization algorithm can improve solving frequency by [Formula Omitted]11× compared with Gurobi. The proposed controller is able to stabilize quadruped locomotion in challenging scenarios where the uncertainties are caused by significant disturbances and unknown environments.
Author Ho, Chin Pang
Zhang, Hai-Tao
Xu, Shaohang
Zhu, Lijun
Author_xml – sequence: 1
  givenname: Shaohang
  orcidid: 0000-0002-6157-242X
  surname: Xu
  fullname: Xu, Shaohang
  organization: School of Artificial Intelligence and Automation and Institute of Artificial Intelligence, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Lijun
  orcidid: 0000-0002-2655-1818
  surname: Zhu
  fullname: Zhu, Lijun
  organization: School of Artificial Intelligence and Automation, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Hai-Tao
  orcidid: 0000-0002-8819-8829
  surname: Zhang
  fullname: Zhang, Hai-Tao
  organization: Engineering Research Center of Autonomous Intelligent Unmanned Systems, The School of Artificial Intelligence and Automation, The Key Laboratory of Image Processing and Intelligent Control, and The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 4
  givenname: Chin Pang
  orcidid: 0000-0002-2143-978X
  surname: Ho
  fullname: Ho, Chin Pang
  organization: School of Data Science, City University of Hong Kong, Hong Kong SAR, China
BookMark eNp9kMtLw0AQhxepYFu9e_AQ8Jy6r-zjKMUXVKq1PS-bZAJb0mzdbIr-9ya0B_HgZWcZft_M8E3QqPENIHRN8IwQrO_Wq-WMYspmjGqdUXmGxkRzkmIu1Kj_ZxlNGdbqAk3adosx5RqzMfpY-bxrYzL3zQG-kldfQp28BShdEd0Bhn4Mvk4qH5L3zpah20OZLHzhdz463ySbpoTQvwWEaF0THbSX6LyydQtXpzpFm8eH9fw5XSyfXub3i7SgmsZUEcFUnoHENsMFySXLldC5lRnFEjOOgTNuFSmFqhQrBaVgBVVAJStKKXI2RbfHufvgPztoo9n6LjT9SkOV1lwSLEmfEsdUEXzbBqhM4aIdbo_ButoQbAaBphdoBoHmJLAH8R9wH9zOhu__kJsj4gDgV5wSzpliP_j2fQQ
CODEN ITREAE
CitedBy_id crossref_primary_10_1002_rnc_7791
crossref_primary_10_1109_LRA_2025_3588716
crossref_primary_10_1109_LRA_2024_3474550
crossref_primary_10_1109_LRA_2025_3585315
crossref_primary_10_1109_LRA_2024_3350372
crossref_primary_10_1007_s11071_024_10465_6
crossref_primary_10_1109_LRA_2025_3536296
crossref_primary_10_1007_s10489_024_05782_7
crossref_primary_10_1016_j_conengprac_2025_106536
crossref_primary_10_1109_ACCESS_2024_3485094
crossref_primary_10_1016_j_ejcon_2025_101393
Cites_doi 10.1016/j.jprocont.2017.10.006
10.1109/mcs.2016.2602087
10.1109/LRA.2018.2794620
10.1109/9.704989
10.1109/TIE.2020.2984986
10.1109/IROS.2010.5649358
10.1109/iros51168.2021.9636393
10.15607/rss.2020.xvi.064
10.1109/ICRA.2016.7487274
10.1177/0278364917694244
10.1126/scirobotics.abb2174
10.1016/j.automatica.2004.08.019
10.1109/TIE.2020.3026289
10.1109/ICRA.2018.8460904
10.1109/LRA.2019.2895882
10.1007/s12532-014-0071-1
10.1137/1.9781611970777
10.23919/ACC50511.2021.9482957
10.1109/IROS.2018.8594448
10.1287/ijoc.2021.1059
10.1090/S0002-9939-1953-0055639-3
10.1109/icra46639.2022.9811796
10.1007/s10107-003-0425-3
10.1109/ICRA.2019.8793865
10.1109/LRA.2021.3128697
10.1109/LRA.2022.3151396
10.1007/s12532-020-00179-2
10.1287/ijoc.2019.0901
10.15607/rss.2018.xiv.010
10.1109/ICRA40945.2020.9197488
10.1109/MEX.1986.4307016
10.1126/scirobotics.aau5872
10.1109/IROS40897.2019.8968251
10.1137/S1052623401392354
10.1109/TRO.2020.3046415
10.1109/LRA.2019.2908502
10.1016/j.automatica.2021.109499
10.1109/ICRA48506.2021.9561326
10.1109/TAC.2003.816984
10.1109/ICRA.2017.7989016
10.1109/IROS.2018.8593885
10.1126/scirobotics.abc5986
10.1137/S0895479896298130
10.1109/HUMANOIDS47582.2021.9555783
10.1017/CBO9780511804441
10.1109/TRO.2020.3003464
10.1109/ICRA.2018.8460528
10.1109/CDC.2002.1185106
10.1109/ICRA.2013.6631038
10.1016/j.automatica.2005.08.023
10.1177/0959651811402275
10.1177/0278364912469821
10.3166/ejc.15.5-21
10.1109/LRA.2020.2974653
10.1109/JRA.1987.1087086
10.1515/9781400831050
10.1109/HUMANOIDS.2017.8246969
10.1109/IROS.2016.7758092
10.1016/S0005-1098(01)00051-6
10.1109/ICRA.2019.8794449
10.1109/LRA.2018.2800124
10.1109/LRA.2022.3176105
10.1109/ICRA48506.2021.9561814
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2023.3299527
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 18
ExternalDocumentID 10_1109_TRO_2023_3299527
10214438
Genre orig-research
GrantInformation_xml – fundername: Chow Sang Sang Group Research Fund
– fundername: National Natural Science Foundation of China
  grantid: 62173155; 52188102; 62225306; U2141235
  funderid: 10.13039/501100001809
– fundername: Program for HUST Academic Frontier Youth Team
– fundername: CityU Start-Up
  grantid: 9610481
– fundername: Chow Sang Sang Holdings International Limited
  grantid: 9229076
GroupedDBID .DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
VJK
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-81638b5e70a50c1b73b869ba752070340e434a81d68f83d622ea628e273cd76b3
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001051293300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Sun Nov 30 03:55:38 EST 2025
Sat Nov 29 01:47:32 EST 2025
Tue Nov 18 21:42:11 EST 2025
Mon Aug 04 05:48:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-81638b5e70a50c1b73b869ba752070340e434a81d68f83d622ea628e273cd76b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8819-8829
0000-0002-6157-242X
0000-0002-2655-1818
0000-0002-2143-978X
PQID 2899471071
PQPubID 27625
PageCount 18
ParticipantIDs ieee_primary_10214438
proquest_journals_2899471071
crossref_primary_10_1109_TRO_2023_3299527
crossref_citationtrail_10_1109_TRO_2023_3299527
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
Nocedal (ref73) 2006
ref53
ref52
ref11
ref55
ref10
ref54
Jia (ref47) 2002; 6
ref17
ref16
ref19
ref51
ref50
Lee (ref59) 2014; 70
ref46
ref45
ref48
ref42
ref41
ref44
ref49
(ref65) 2022
Coumans (ref18) 20162021
ref4
ref3
ref6
ref5
Rawlings (ref9) 2017
ref40
ref35
(ref71) 2022
ref34
ref78
ref37
ref36
ref30
ref74
Iscen (ref31) 2018
ref33
ref77
ref32
ref76
Heirung (ref43) 2018; 114
ref2
ref1
ref39
Diamond (ref72) 2016; 17
ref38
Yang (ref75) 2022
ref70
ref24
ref68
ref23
ref67
ref26
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref28
ref27
ref29
ref60
ref62
ref61
Kim (ref25) 2019; abs/1909.06586
References_xml – ident: ref52
  doi: 10.1016/j.jprocont.2017.10.006
– ident: ref44
  doi: 10.1109/mcs.2016.2602087
– ident: ref40
  doi: 10.1109/LRA.2018.2794620
– ident: ref57
  doi: 10.1109/9.704989
– ident: ref49
  doi: 10.1109/TIE.2020.2984986
– ident: ref77
  doi: 10.1109/IROS.2010.5649358
– ident: ref27
  doi: 10.1109/iros51168.2021.9636393
– ident: ref32
  doi: 10.15607/rss.2020.xvi.064
– ident: ref42
  doi: 10.1109/ICRA.2016.7487274
– ident: ref4
  doi: 10.1177/0278364917694244
– start-page: 773
  volume-title: Proc. Conf. Robot Learn.
  year: 2022
  ident: ref75
  article-title: Fast and efficient locomotion via learned gait transitions
– ident: ref36
  doi: 10.1126/scirobotics.abb2174
– ident: ref45
  doi: 10.1016/j.automatica.2004.08.019
– ident: ref17
  doi: 10.1109/TIE.2020.3026289
– year: 20162021
  ident: ref18
  article-title: Pybullet, a python module for physics simulation for games, robotics and machine learning
– ident: ref76
  doi: 10.1109/ICRA.2018.8460904
– ident: ref12
  doi: 10.1109/LRA.2019.2895882
– ident: ref69
  doi: 10.1007/s12532-014-0071-1
– ident: ref70
  doi: 10.1137/1.9781611970777
– volume: abs/1909.06586
  volume-title: CoRR
  year: 2019
  ident: ref25
  article-title: Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control
– ident: ref56
  doi: 10.23919/ACC50511.2021.9482957
– ident: ref14
  doi: 10.1109/IROS.2018.8594448
– start-page: 916
  volume-title: Proc. Conf. Robot Learn.
  year: 2018
  ident: ref31
  article-title: Policies modulating trajectory generators
– ident: ref16
  doi: 10.1287/ijoc.2021.1059
– ident: ref74
  doi: 10.1090/S0002-9939-1953-0055639-3
– ident: ref24
  doi: 10.1109/icra46639.2022.9811796
– ident: ref64
  doi: 10.1007/s10107-003-0425-3
– volume: 114
  start-page: 158
  volume-title: Comput. Chem. Eng.
  year: 2018
  ident: ref43
  article-title: Stochastic model predictive control How does it work?
– ident: ref60
  doi: 10.1287/ijoc.2021.1059
– ident: ref6
  doi: 10.1109/ICRA.2019.8793865
– ident: ref28
  doi: 10.1109/LRA.2021.3128697
– ident: ref38
  doi: 10.1109/LRA.2022.3151396
– ident: ref68
  doi: 10.1007/s12532-020-00179-2
– ident: ref62
  doi: 10.1287/ijoc.2019.0901
– year: 2022
  ident: ref65
  article-title: Gurobi optimizer reference manual
– ident: ref37
  doi: 10.15607/rss.2018.xiv.010
– ident: ref23
  doi: 10.1109/ICRA40945.2020.9197488
– ident: ref19
  doi: 10.1109/MEX.1986.4307016
– ident: ref34
  doi: 10.1126/scirobotics.aau5872
– ident: ref13
  doi: 10.1109/IROS40897.2019.8968251
– ident: ref61
  doi: 10.1137/S1052623401392354
– ident: ref66
  doi: 10.1109/TRO.2020.3046415
– ident: ref21
  doi: 10.1109/LRA.2019.2908502
– ident: ref53
  doi: 10.1016/j.automatica.2021.109499
– ident: ref26
  doi: 10.1109/ICRA48506.2021.9561326
– ident: ref58
  doi: 10.1109/TAC.2003.816984
– volume: 17
  start-page: 2909
  issue: 1
  year: 2016
  ident: ref72
  article-title: CVXPY: A python-embedded modeling language for convex optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref41
  doi: 10.1109/ICRA.2017.7989016
– volume: 70
  start-page: 114
  volume-title: Comput. Chem. Eng.
  year: 2014
  ident: ref59
  article-title: From robust model predictive control to stochastic optimal control and approximate dynamic programming: A perspective gained from a personal journey
– volume-title: Numerical Optimization
  year: 2006
  ident: ref73
– ident: ref5
  doi: 10.1109/IROS.2018.8593885
– ident: ref35
  doi: 10.1126/scirobotics.abc5986
– ident: ref63
  doi: 10.1137/S0895479896298130
– ident: ref51
  doi: 10.1109/HUMANOIDS47582.2021.9555783
– ident: ref78
  doi: 10.1017/CBO9780511804441
– volume: 6
  start-page: 4507
  volume-title: Proc. IEEE Amer. Control Conf.
  year: 2002
  ident: ref47
  article-title: Min-max feedback model predictive control for distributed control with communication
– ident: ref20
  doi: 10.1109/TRO.2020.3003464
– ident: ref39
  doi: 10.1109/ICRA.2018.8460528
– ident: ref54
  doi: 10.1109/CDC.2002.1185106
– ident: ref3
  doi: 10.1109/ICRA.2013.6631038
– ident: ref55
  doi: 10.1016/j.automatica.2005.08.023
– ident: ref2
  doi: 10.1177/0959651811402275
– ident: ref22
  doi: 10.1177/0278364912469821
– ident: ref48
  doi: 10.3166/ejc.15.5-21
– volume-title: Model Predictive Control: Theory, Computation, and Design
  year: 2017
  ident: ref9
– ident: ref33
  doi: 10.1109/LRA.2020.2974653
– ident: ref67
  doi: 10.1109/JRA.1987.1087086
– ident: ref10
  doi: 10.1515/9781400831050
– ident: ref50
  doi: 10.1109/HUMANOIDS.2017.8246969
– ident: ref1
  doi: 10.1109/IROS.2016.7758092
– year: 2022
  ident: ref71
  article-title: MOSEK documentation
– ident: ref46
  doi: 10.1016/S0005-1098(01)00051-6
– ident: ref15
  doi: 10.1109/ICRA.2019.8794449
– ident: ref11
  doi: 10.1109/LRA.2018.2800124
– ident: ref29
  doi: 10.1109/LRA.2022.3176105
– ident: ref30
  doi: 10.1109/ICRA48506.2021.9561814
SSID ssj0024903
Score 2.5132418
Snippet This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Algorithms
Constraint modelling
Controllers
Heuristic algorithms
Legged robots
Locomotion
model predictive control (MPC)
Optimization
optimization and optimal control
Optimization models
Predictive control
Predictive models
Quadratic programming
Quadrupedal robots
Robots
Robust control
robust/adaptive control of robotic systems
Uncertainty
Unknown environments
Title Robust Convex Model Predictive Control for Quadruped Locomotion Under Uncertainties
URI https://ieeexplore.ieee.org/document/10214438
https://www.proquest.com/docview/2899471071
Volume 39
WOSCitedRecordID wos001051293300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3Lw4qFbln4kOcpweBhzzim7leajIIx1dK3455uXdjoQBS-llKSU95r3fsn7-CF000-DsK-58YSUwgt4Kj1BWeilhKVaW9CvXIX364iNx3w-F5O6WN3VwhhjXPKZ6cKti-XrTJVwVNZzNNSBzxuowRirirW-G-sJR4MMLcU8nwi-iUkS0ZtNH7tAE971rfENgUBmywc5UpUflti5l-HhPz_sCB3UOBLfVYo_RjtmeYL2t7oLnqLnaSbLdYEHkFj-gYH1bIEnOURmwMbBc8hSxxa24qcy0Xm5MhqPMpVV1D7YcSLZq6rSBqD1agu9DO9ngwev5lDwFBW08DjgLRkaRpKQqL5kvuSRkAkLKSz2gJjADxILWiOecl9HlJokotxYVKM0i6R_hprLbGnOEQ6UIjqJiAn7MjBRIkOulbT4R0i7CaVJG_U2Uo1V3WAceC4WsdtoEBFbPcSgh7jWQxvdfs1YVc01_hjbArlvjatE3kadjebievmtY9hFWq9r4dPFL9Mu0R68vUpM6aBmkZfmCu2q9-JtnV-7P-sTikfKqg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8a3STgwGArosA2H7jskNZx7MQ-IgRiWlcKK4hbFH9EQkINahvEn4-fk0KlCaRdoiiylei9-L2f_T5-AEdxyUVspYuU1iristSRYpmISpqV1nrQb0KF980wG43k7a0at8XqoRbGOReSz1wfb0Ms31amxqOyQaCh5olcg4-CcxY35VqvrfVUIELGpmJRQpVcRiWpGkyuLvpIFN5PvPkVSCGz4oUCrco_tjg4mLPP__lp27DVIkly3Kh-Bz646RfYXOkv-BX-XlW6ni_ICaaWPxHkPbsn4xnGZtDK4XPMUyceuJLLurCz-sFZMqxM1ZD7kMCK5K-mSRzA5qtduD47nZycRy2LQmSYYotIIuLSwmW0ENTEOku0TJUuMsFwuXPqeMILD1tTWcrEpoy5ImXSeVxjbJbqZBc602rq9oBwY6gtUupErLlLCy2kNdojIKX9NpQVPRgspZqbtsU4Ml3c52GrQVXu9ZCjHvJWDz34-TLjoWmv8c7YLsp9ZVwj8h4cLjWXtwtwnuM-0vtdD6D235j2A9bPJ3-G-fDX6PcBbOCbmjSVQ-gsZrX7Bp_M4-JuPvse_rJnQGLN8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Convex+Model+Predictive+Control+for+Quadruped+Locomotion+Under+Uncertainties&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Xu%2C+Shaohang&rft.au=Zhu%2C+Lijun&rft.au=Zhang%2C+Hai-Tao&rft.au=Ho%2C+Chin+Pang&rft.date=2023-12-01&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=39&rft.issue=6&rft.spage=4837&rft.epage=4854&rft_id=info:doi/10.1109%2FTRO.2023.3299527&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRO_2023_3299527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon