Robust Convex Model Predictive Control for Quadruped Locomotion Under Uncertainties
This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust...
Uložené v:
| Vydané v: | IEEE transactions on robotics Ročník 39; číslo 6; s. 1 - 18 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1552-3098, 1941-0468 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust min-max model predictive controller is proposed by recurrently solving the optimization model. We prove that the min-max optimization model is equivalent to a convex quadratic constrained quadratic program by exploiting the structure of uncertainties. Moreover, a two-stage optimization algorithm is proposed to solve the optimization problem efficiently, allowing for the deployment of the controller onto the real robot. The results show that the proposed optimization algorithm can improve solving frequency by <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>11× compared with Gurobi. The proposed controller is able to stabilize quadruped locomotion in challenging scenarios where the uncertainties are caused by significant disturbances and unknown environments. |
|---|---|
| AbstractList | This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust min-max model predictive controller is proposed by recurrently solving the optimization model. We prove that the min-max optimization model is equivalent to a convex quadratic constrained quadratic program by exploiting the structure of uncertainties. Moreover, a two-stage optimization algorithm is proposed to solve the optimization problem efficiently, allowing for the deployment of the controller onto the real robot. The results show that the proposed optimization algorithm can improve solving frequency by <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>11× compared with Gurobi. The proposed controller is able to stabilize quadruped locomotion in challenging scenarios where the uncertainties are caused by significant disturbances and unknown environments. This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust min-max model predictive controller is proposed by recurrently solving the optimization model. We prove that the min-max optimization model is equivalent to a convex quadratic constrained quadratic program by exploiting the structure of uncertainties. Moreover, a two-stage optimization algorithm is proposed to solve the optimization problem efficiently, allowing for the deployment of the controller onto the real robot. The results show that the proposed optimization algorithm can improve solving frequency by [Formula Omitted]11× compared with Gurobi. The proposed controller is able to stabilize quadruped locomotion in challenging scenarios where the uncertainties are caused by significant disturbances and unknown environments. |
| Author | Ho, Chin Pang Zhang, Hai-Tao Xu, Shaohang Zhu, Lijun |
| Author_xml | – sequence: 1 givenname: Shaohang orcidid: 0000-0002-6157-242X surname: Xu fullname: Xu, Shaohang organization: School of Artificial Intelligence and Automation and Institute of Artificial Intelligence, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Lijun orcidid: 0000-0002-2655-1818 surname: Zhu fullname: Zhu, Lijun organization: School of Artificial Intelligence and Automation, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Hai-Tao orcidid: 0000-0002-8819-8829 surname: Zhang fullname: Zhang, Hai-Tao organization: Engineering Research Center of Autonomous Intelligent Unmanned Systems, The School of Artificial Intelligence and Automation, The Key Laboratory of Image Processing and Intelligent Control, and The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 4 givenname: Chin Pang orcidid: 0000-0002-2143-978X surname: Ho fullname: Ho, Chin Pang organization: School of Data Science, City University of Hong Kong, Hong Kong SAR, China |
| BookMark | eNp9kMtLw0AQhxepYFu9e_AQ8Jy6r-zjKMUXVKq1PS-bZAJb0mzdbIr-9ya0B_HgZWcZft_M8E3QqPENIHRN8IwQrO_Wq-WMYspmjGqdUXmGxkRzkmIu1Kj_ZxlNGdbqAk3adosx5RqzMfpY-bxrYzL3zQG-kldfQp28BShdEd0Bhn4Mvk4qH5L3zpah20OZLHzhdz463ySbpoTQvwWEaF0THbSX6LyydQtXpzpFm8eH9fw5XSyfXub3i7SgmsZUEcFUnoHENsMFySXLldC5lRnFEjOOgTNuFSmFqhQrBaVgBVVAJStKKXI2RbfHufvgPztoo9n6LjT9SkOV1lwSLEmfEsdUEXzbBqhM4aIdbo_ButoQbAaBphdoBoHmJLAH8R9wH9zOhu__kJsj4gDgV5wSzpliP_j2fQQ |
| CODEN | ITREAE |
| CitedBy_id | crossref_primary_10_1002_rnc_7791 crossref_primary_10_1109_LRA_2025_3588716 crossref_primary_10_1109_LRA_2024_3474550 crossref_primary_10_1109_LRA_2025_3585315 crossref_primary_10_1109_LRA_2024_3350372 crossref_primary_10_1007_s11071_024_10465_6 crossref_primary_10_1109_LRA_2025_3536296 crossref_primary_10_1007_s10489_024_05782_7 crossref_primary_10_1016_j_conengprac_2025_106536 crossref_primary_10_1109_ACCESS_2024_3485094 crossref_primary_10_1016_j_ejcon_2025_101393 |
| Cites_doi | 10.1016/j.jprocont.2017.10.006 10.1109/mcs.2016.2602087 10.1109/LRA.2018.2794620 10.1109/9.704989 10.1109/TIE.2020.2984986 10.1109/IROS.2010.5649358 10.1109/iros51168.2021.9636393 10.15607/rss.2020.xvi.064 10.1109/ICRA.2016.7487274 10.1177/0278364917694244 10.1126/scirobotics.abb2174 10.1016/j.automatica.2004.08.019 10.1109/TIE.2020.3026289 10.1109/ICRA.2018.8460904 10.1109/LRA.2019.2895882 10.1007/s12532-014-0071-1 10.1137/1.9781611970777 10.23919/ACC50511.2021.9482957 10.1109/IROS.2018.8594448 10.1287/ijoc.2021.1059 10.1090/S0002-9939-1953-0055639-3 10.1109/icra46639.2022.9811796 10.1007/s10107-003-0425-3 10.1109/ICRA.2019.8793865 10.1109/LRA.2021.3128697 10.1109/LRA.2022.3151396 10.1007/s12532-020-00179-2 10.1287/ijoc.2019.0901 10.15607/rss.2018.xiv.010 10.1109/ICRA40945.2020.9197488 10.1109/MEX.1986.4307016 10.1126/scirobotics.aau5872 10.1109/IROS40897.2019.8968251 10.1137/S1052623401392354 10.1109/TRO.2020.3046415 10.1109/LRA.2019.2908502 10.1016/j.automatica.2021.109499 10.1109/ICRA48506.2021.9561326 10.1109/TAC.2003.816984 10.1109/ICRA.2017.7989016 10.1109/IROS.2018.8593885 10.1126/scirobotics.abc5986 10.1137/S0895479896298130 10.1109/HUMANOIDS47582.2021.9555783 10.1017/CBO9780511804441 10.1109/TRO.2020.3003464 10.1109/ICRA.2018.8460528 10.1109/CDC.2002.1185106 10.1109/ICRA.2013.6631038 10.1016/j.automatica.2005.08.023 10.1177/0959651811402275 10.1177/0278364912469821 10.3166/ejc.15.5-21 10.1109/LRA.2020.2974653 10.1109/JRA.1987.1087086 10.1515/9781400831050 10.1109/HUMANOIDS.2017.8246969 10.1109/IROS.2016.7758092 10.1016/S0005-1098(01)00051-6 10.1109/ICRA.2019.8794449 10.1109/LRA.2018.2800124 10.1109/LRA.2022.3176105 10.1109/ICRA48506.2021.9561814 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TRO.2023.3299527 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0468 |
| EndPage | 18 |
| ExternalDocumentID | 10_1109_TRO_2023_3299527 10214438 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Chow Sang Sang Group Research Fund – fundername: National Natural Science Foundation of China grantid: 62173155; 52188102; 62225306; U2141235 funderid: 10.13039/501100001809 – fundername: Program for HUST Academic Frontier Youth Team – fundername: CityU Start-Up grantid: 9610481 – fundername: Chow Sang Sang Holdings International Limited grantid: 9229076 |
| GroupedDBID | .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS 5VS AAYXX AETIX AGSQL AIBXA CITATION EJD H~9 VJK 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-81638b5e70a50c1b73b869ba752070340e434a81d68f83d622ea628e273cd76b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001051293300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1552-3098 |
| IngestDate | Sun Nov 30 03:55:38 EST 2025 Sat Nov 29 01:47:32 EST 2025 Tue Nov 18 21:42:11 EST 2025 Mon Aug 04 05:48:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-81638b5e70a50c1b73b869ba752070340e434a81d68f83d622ea628e273cd76b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8819-8829 0000-0002-6157-242X 0000-0002-2655-1818 0000-0002-2143-978X |
| PQID | 2899471071 |
| PQPubID | 27625 |
| PageCount | 18 |
| ParticipantIDs | ieee_primary_10214438 proquest_journals_2899471071 crossref_primary_10_1109_TRO_2023_3299527 crossref_citationtrail_10_1109_TRO_2023_3299527 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on robotics |
| PublicationTitleAbbrev | TRO |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 Nocedal (ref73) 2006 ref53 ref52 ref11 ref55 ref10 ref54 Jia (ref47) 2002; 6 ref17 ref16 ref19 ref51 ref50 Lee (ref59) 2014; 70 ref46 ref45 ref48 ref42 ref41 ref44 ref49 (ref65) 2022 Coumans (ref18) 20162021 ref4 ref3 ref6 ref5 Rawlings (ref9) 2017 ref40 ref35 (ref71) 2022 ref34 ref78 ref37 ref36 ref30 ref74 Iscen (ref31) 2018 ref33 ref77 ref32 ref76 Heirung (ref43) 2018; 114 ref2 ref1 ref39 Diamond (ref72) 2016; 17 ref38 Yang (ref75) 2022 ref70 ref24 ref68 ref23 ref67 ref26 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref28 ref27 ref29 ref60 ref62 ref61 Kim (ref25) 2019; abs/1909.06586 |
| References_xml | – ident: ref52 doi: 10.1016/j.jprocont.2017.10.006 – ident: ref44 doi: 10.1109/mcs.2016.2602087 – ident: ref40 doi: 10.1109/LRA.2018.2794620 – ident: ref57 doi: 10.1109/9.704989 – ident: ref49 doi: 10.1109/TIE.2020.2984986 – ident: ref77 doi: 10.1109/IROS.2010.5649358 – ident: ref27 doi: 10.1109/iros51168.2021.9636393 – ident: ref32 doi: 10.15607/rss.2020.xvi.064 – ident: ref42 doi: 10.1109/ICRA.2016.7487274 – ident: ref4 doi: 10.1177/0278364917694244 – start-page: 773 volume-title: Proc. Conf. Robot Learn. year: 2022 ident: ref75 article-title: Fast and efficient locomotion via learned gait transitions – ident: ref36 doi: 10.1126/scirobotics.abb2174 – ident: ref45 doi: 10.1016/j.automatica.2004.08.019 – ident: ref17 doi: 10.1109/TIE.2020.3026289 – year: 20162021 ident: ref18 article-title: Pybullet, a python module for physics simulation for games, robotics and machine learning – ident: ref76 doi: 10.1109/ICRA.2018.8460904 – ident: ref12 doi: 10.1109/LRA.2019.2895882 – ident: ref69 doi: 10.1007/s12532-014-0071-1 – ident: ref70 doi: 10.1137/1.9781611970777 – volume: abs/1909.06586 volume-title: CoRR year: 2019 ident: ref25 article-title: Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control – ident: ref56 doi: 10.23919/ACC50511.2021.9482957 – ident: ref14 doi: 10.1109/IROS.2018.8594448 – start-page: 916 volume-title: Proc. Conf. Robot Learn. year: 2018 ident: ref31 article-title: Policies modulating trajectory generators – ident: ref16 doi: 10.1287/ijoc.2021.1059 – ident: ref74 doi: 10.1090/S0002-9939-1953-0055639-3 – ident: ref24 doi: 10.1109/icra46639.2022.9811796 – ident: ref64 doi: 10.1007/s10107-003-0425-3 – volume: 114 start-page: 158 volume-title: Comput. Chem. Eng. year: 2018 ident: ref43 article-title: Stochastic model predictive control How does it work? – ident: ref60 doi: 10.1287/ijoc.2021.1059 – ident: ref6 doi: 10.1109/ICRA.2019.8793865 – ident: ref28 doi: 10.1109/LRA.2021.3128697 – ident: ref38 doi: 10.1109/LRA.2022.3151396 – ident: ref68 doi: 10.1007/s12532-020-00179-2 – ident: ref62 doi: 10.1287/ijoc.2019.0901 – year: 2022 ident: ref65 article-title: Gurobi optimizer reference manual – ident: ref37 doi: 10.15607/rss.2018.xiv.010 – ident: ref23 doi: 10.1109/ICRA40945.2020.9197488 – ident: ref19 doi: 10.1109/MEX.1986.4307016 – ident: ref34 doi: 10.1126/scirobotics.aau5872 – ident: ref13 doi: 10.1109/IROS40897.2019.8968251 – ident: ref61 doi: 10.1137/S1052623401392354 – ident: ref66 doi: 10.1109/TRO.2020.3046415 – ident: ref21 doi: 10.1109/LRA.2019.2908502 – ident: ref53 doi: 10.1016/j.automatica.2021.109499 – ident: ref26 doi: 10.1109/ICRA48506.2021.9561326 – ident: ref58 doi: 10.1109/TAC.2003.816984 – volume: 17 start-page: 2909 issue: 1 year: 2016 ident: ref72 article-title: CVXPY: A python-embedded modeling language for convex optimization publication-title: J. Mach. Learn. Res. – ident: ref41 doi: 10.1109/ICRA.2017.7989016 – volume: 70 start-page: 114 volume-title: Comput. Chem. Eng. year: 2014 ident: ref59 article-title: From robust model predictive control to stochastic optimal control and approximate dynamic programming: A perspective gained from a personal journey – volume-title: Numerical Optimization year: 2006 ident: ref73 – ident: ref5 doi: 10.1109/IROS.2018.8593885 – ident: ref35 doi: 10.1126/scirobotics.abc5986 – ident: ref63 doi: 10.1137/S0895479896298130 – ident: ref51 doi: 10.1109/HUMANOIDS47582.2021.9555783 – ident: ref78 doi: 10.1017/CBO9780511804441 – volume: 6 start-page: 4507 volume-title: Proc. IEEE Amer. Control Conf. year: 2002 ident: ref47 article-title: Min-max feedback model predictive control for distributed control with communication – ident: ref20 doi: 10.1109/TRO.2020.3003464 – ident: ref39 doi: 10.1109/ICRA.2018.8460528 – ident: ref54 doi: 10.1109/CDC.2002.1185106 – ident: ref3 doi: 10.1109/ICRA.2013.6631038 – ident: ref55 doi: 10.1016/j.automatica.2005.08.023 – ident: ref2 doi: 10.1177/0959651811402275 – ident: ref22 doi: 10.1177/0278364912469821 – ident: ref48 doi: 10.3166/ejc.15.5-21 – volume-title: Model Predictive Control: Theory, Computation, and Design year: 2017 ident: ref9 – ident: ref33 doi: 10.1109/LRA.2020.2974653 – ident: ref67 doi: 10.1109/JRA.1987.1087086 – ident: ref10 doi: 10.1515/9781400831050 – ident: ref50 doi: 10.1109/HUMANOIDS.2017.8246969 – ident: ref1 doi: 10.1109/IROS.2016.7758092 – year: 2022 ident: ref71 article-title: MOSEK documentation – ident: ref46 doi: 10.1016/S0005-1098(01)00051-6 – ident: ref15 doi: 10.1109/ICRA.2019.8794449 – ident: ref11 doi: 10.1109/LRA.2018.2800124 – ident: ref29 doi: 10.1109/LRA.2022.3176105 – ident: ref30 doi: 10.1109/ICRA48506.2021.9561814 |
| SSID | ssj0024903 |
| Score | 2.5132418 |
| Snippet | This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Algorithms Constraint modelling Controllers Heuristic algorithms Legged robots Locomotion model predictive control (MPC) Optimization optimization and optimal control Optimization models Predictive control Predictive models Quadratic programming Quadrupedal robots Robots Robust control robust/adaptive control of robotic systems Uncertainty Unknown environments |
| Title | Robust Convex Model Predictive Control for Quadruped Locomotion Under Uncertainties |
| URI | https://ieeexplore.ieee.org/document/10214438 https://www.proquest.com/docview/2899471071 |
| Volume | 39 |
| WOSCitedRecordID | wos001051293300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0468 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024903 issn: 1552-3098 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3Lw4qFbln4kOcpweBhzzim7leajIIx1dK3455uXdjoQBS-llKSU95r3fsn7-CF000-DsK-58YSUwgt4Kj1BWeilhKVaW9CvXIX364iNx3w-F5O6WN3VwhhjXPKZ6cKti-XrTJVwVNZzNNSBzxuowRirirW-G-sJR4MMLcU8nwi-iUkS0ZtNH7tAE971rfENgUBmywc5UpUflti5l-HhPz_sCB3UOBLfVYo_RjtmeYL2t7oLnqLnaSbLdYEHkFj-gYH1bIEnOURmwMbBc8hSxxa24qcy0Xm5MhqPMpVV1D7YcSLZq6rSBqD1agu9DO9ngwev5lDwFBW08DjgLRkaRpKQqL5kvuSRkAkLKSz2gJjADxILWiOecl9HlJokotxYVKM0i6R_hprLbGnOEQ6UIjqJiAn7MjBRIkOulbT4R0i7CaVJG_U2Uo1V3WAceC4WsdtoEBFbPcSgh7jWQxvdfs1YVc01_hjbArlvjatE3kadjebievmtY9hFWq9r4dPFL9Mu0R68vUpM6aBmkZfmCu2q9-JtnV-7P-sTikfKqg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8a3STgwGArosA2H7jskNZx7MQ-IgRiWlcKK4hbFH9EQkINahvEn4-fk0KlCaRdoiiylei9-L2f_T5-AEdxyUVspYuU1iristSRYpmISpqV1nrQb0KF980wG43k7a0at8XqoRbGOReSz1wfb0Ms31amxqOyQaCh5olcg4-CcxY35VqvrfVUIELGpmJRQpVcRiWpGkyuLvpIFN5PvPkVSCGz4oUCrco_tjg4mLPP__lp27DVIkly3Kh-Bz646RfYXOkv-BX-XlW6ni_ICaaWPxHkPbsn4xnGZtDK4XPMUyceuJLLurCz-sFZMqxM1ZD7kMCK5K-mSRzA5qtduD47nZycRy2LQmSYYotIIuLSwmW0ENTEOku0TJUuMsFwuXPqeMILD1tTWcrEpoy5ImXSeVxjbJbqZBc602rq9oBwY6gtUupErLlLCy2kNdojIKX9NpQVPRgspZqbtsU4Ml3c52GrQVXu9ZCjHvJWDz34-TLjoWmv8c7YLsp9ZVwj8h4cLjWXtwtwnuM-0vtdD6D235j2A9bPJ3-G-fDX6PcBbOCbmjSVQ-gsZrX7Bp_M4-JuPvse_rJnQGLN8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Convex+Model+Predictive+Control+for+Quadruped+Locomotion+Under+Uncertainties&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Xu%2C+Shaohang&rft.au=Zhu%2C+Lijun&rft.au=Zhang%2C+Hai-Tao&rft.au=Ho%2C+Chin+Pang&rft.date=2023-12-01&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=39&rft.issue=6&rft.spage=4837&rft.epage=4854&rft_id=info:doi/10.1109%2FTRO.2023.3299527&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRO_2023_3299527 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon |