A Privacy-Preserving Service Framework for Traveling Salesman Problem-Based Neural Combinatorial Optimization Network

The traveling salesman problem (TSP) is one of the classic combinatorial optimization problems, which can be widely used in intelligent transportation and logistics field. Neural network has shown great potential in combinatorial optimization tasks. However, it faces privacy leakage when a TSP neura...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cloud computing Ročník 11; číslo 4; s. 1 - 14
Hlavní autoři: Liu, Jiao, Li, Xinghua, Liu, Ximeng, Tang, Jiawei, Ma, Siqi, Weng, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-7161, 2372-0018
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The traveling salesman problem (TSP) is one of the classic combinatorial optimization problems, which can be widely used in intelligent transportation and logistics field. Neural network has shown great potential in combinatorial optimization tasks. However, it faces privacy leakage when a TSP neural combinatorial optimization network and user's data are directly outsourced to a cloud platform to provide and request service. In order to address the issue, this paper proposes a privacy-preserving service framework for a TSP-based neural combinatorial optimization network called PPSF. We first protect the service provider's model parameters and users' data by different split methods in multiple cloud servers, providing a secure outsourced mode for the participators in the PPSF framework. Then, in the secure outsourced mode, a series of secure computation protocols are designed for the cloud servers to support performing the secure computing in each service task. Moreover, it can also protect the process that the cloud servers respond to users after data processing and achieve private service result recovery. Finally, we prove that the proposed framework can realize privacy protection for TSP-based combinatorial optimization service and verify its utility and efficiency by experiments.
AbstractList The traveling salesman problem (TSP) is one of the classic combinatorial optimization problems, which can be widely used in intelligent transportation and logistics field. Neural network has shown great potential in combinatorial optimization tasks. However, it faces privacy leakage when a TSP neural combinatorial optimization network and user's data are directly outsourced to a cloud platform to provide and request service. In order to address the issue, this article proposes a privacy-preserving service framework for a TSP-based neural combinatorial optimization network called PPSF. We first protect the service provider's model parameters and users’ data by different split methods in multiple cloud servers, providing a secure outsourced mode for the participators in the PPSF framework. Then, in the secure outsourced mode, a series of secure computation protocols are designed for the cloud servers to support performing the secure computing in each service task. Moreover, it can also protect the process that the cloud servers respond to users after data processing and achieve private service result recovery. Finally, we prove that the proposed framework can realize privacy protection for TSP-based combinatorial optimization service and verify its utility and efficiency by experiments.
The traveling salesman problem (TSP) is one of the classic combinatorial optimization problems, which can be widely used in intelligent transportation and logistics field. Neural network has shown great potential in combinatorial optimization tasks. However, it faces privacy leakage when a TSP neural combinatorial optimization network and user's data are directly outsourced to a cloud platform to provide and request service. In order to address the issue, this paper proposes a privacy-preserving service framework for a TSP-based neural combinatorial optimization network called PPSF. We first protect the service provider's model parameters and users' data by different split methods in multiple cloud servers, providing a secure outsourced mode for the participators in the PPSF framework. Then, in the secure outsourced mode, a series of secure computation protocols are designed for the cloud servers to support performing the secure computing in each service task. Moreover, it can also protect the process that the cloud servers respond to users after data processing and achieve private service result recovery. Finally, we prove that the proposed framework can realize privacy protection for TSP-based combinatorial optimization service and verify its utility and efficiency by experiments.
Author Ma, Siqi
Liu, Jiao
Tang, Jiawei
Weng, Jian
Li, Xinghua
Liu, Ximeng
Author_xml – sequence: 1
  givenname: Jiao
  orcidid: 0000-0001-5292-5433
  surname: Liu
  fullname: Liu, Jiao
  organization: State Key Laboratory of Integrated Services Networks, China
– sequence: 2
  givenname: Xinghua
  orcidid: 0000-0002-5583-4155
  surname: Li
  fullname: Li, Xinghua
  organization: State Key Laboratory of Integrated Services Networks, China
– sequence: 3
  givenname: Ximeng
  orcidid: 0000-0002-4238-3295
  surname: Liu
  fullname: Liu, Ximeng
  organization: College of Computer and Data Science, Fuzhou University, Fujian, China
– sequence: 4
  givenname: Jiawei
  surname: Tang
  fullname: Tang, Jiawei
  organization: State Key Laboratory of Integrated Services Networks, China
– sequence: 5
  givenname: Siqi
  surname: Ma
  fullname: Ma, Siqi
  organization: School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD, Australia
– sequence: 6
  givenname: Jian
  orcidid: 0000-0003-4067-8230
  surname: Weng
  fullname: Weng, Jian
  organization: College of Cybersecurity/College of Information Science and Technology, Jinan University, Guangzhou, China
BookMark eNp9kE1PwzAMhiM0JMbYnQOHSpw78rE2zXFUDJAmNolxrtLGRRltM5J2aPx60m0HxAFfbMt-XsvvJRo0pgGErgmeEILF3TpNJxRTNmE04VFEz9CQMk5DjEky8DWJk5CTmFygsXMb7COJiCBiiLpZsLJ6J4t9uLLgwO508x689rmAYG5lDV_GfgSlscHayh1Uh7mswNWy8azJK6jDe-lABS_QWVkFqalz3cjWWO275bbVtf6WrTaN32h7uSt0XsrKwfiUR-ht_rBOn8LF8vE5nS3CggrahlyBymOKOY85m-I4oYIVCY1zrjguFRSxZGSqWCQhVyyfcqBKRZjgMiFA85yN0O1Rd2vNZweuzTams40_mdFECIoF8zFC-LhVWOOchTLbWl1Lu88Iznp_M-9v1vubnfz1SPwHKXR7eLG1Ulf_gTdHUAPArzsk4oIL9gM5ZYsR
CODEN ITCCF6
CitedBy_id crossref_primary_10_1088_1742_6596_2898_1_012032
Cites_doi 10.1109/TITS.2021.3055258
10.1109/JSAC.2019.2959183
10.1109/TITS.2015.2395536
10.1109/TITS.2020.3009289
10.1145/3373376.3378486
10.1109/TITS.2022.3168987
10.1109/TCC.2018.2799219
10.1109/TIFS.2021.3067468
10.1109/TSMC.2020.2969317
10.1109/TCYB.2016.2647440
10.1609/aaai.v36i2.20036
10.1109/tdsc.2020.2971598
10.1109/TDSC.2020.3029899
10.14722/ndss.2020.24202
10.1109/TITS.2019.2909109
10.1109/MSEC.2019.2963021
10.1109/TCYB.2019.2962865
10.1109/SP.2017.12
10.1109/SPW.2019.00020
10.14722/ndss.2020.23005
10.1109/TCC.2017.2732344
10.1109/MNET.011.2000293
10.1109/TCC.2018.2880181
10.1109/TIFS.2019.2931068
10.1109/TIFS.2019.2938875
10.1109/TCC.2016.2647718
10.1109/MNET.2019.1800362
10.1109/TNNLS.2021.3068828
10.1186/s42400-020-00057-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCC.2023.3287552
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2372-0018
EndPage 14
ExternalDocumentID 10_1109_TCC_2023_3287552
10157979
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-7dedb620776734068293c826b7d70fdec6a314d35aebd3b47e2dd5010f81e2bb3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124007100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-7161
IngestDate Sun Nov 09 08:16:12 EST 2025
Sat Nov 29 04:11:02 EST 2025
Tue Nov 18 21:27:19 EST 2025
Wed Aug 27 02:14:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-7dedb620776734068293c826b7d70fdec6a314d35aebd3b47e2dd5010f81e2bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4238-3295
0000-0003-4067-8230
0000-0001-5292-5433
0000-0002-5583-4155
0000-0002-3771-2867
0000-0003-3479-5713
PQID 2899209333
PQPubID 2040413
PageCount 14
ParticipantIDs proquest_journals_2899209333
crossref_citationtrail_10_1109_TCC_2023_3287552
crossref_primary_10_1109_TCC_2023_3287552
ieee_primary_10157979
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cloud computing
PublicationTitleAbbrev TCC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
Applegate (ref1) 2011
ref15
ref14
ref36
ref31
ref30
ref11
ref10
ref2
ref17
ref39
ref16
ref38
ref19
Kool (ref21)
Martxed (ref37)
Bello (ref4)
Jian (ref6)
ref24
ref23
Orekondy (ref18)
ref26
ref20
ref22
Mishra (ref25)
ref27
Juvekar (ref33)
ref29
ref8
ref7
ref9
ref3
Dowlin (ref32) 2016
ref5
References_xml – ident: ref15
  doi: 10.1109/TITS.2021.3055258
– ident: ref31
  doi: 10.1109/JSAC.2019.2959183
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref21
  article-title: Attention, learn to solve routing problems!
– ident: ref3
  doi: 10.1109/TITS.2015.2395536
– volume-title: Proc. 24th ACM Conf. Comput. Commun. Secur.
  ident: ref6
  article-title: Oblivious neural network predictions via MiniONN transformations
– start-page: 308
  volume-title: Proc. 23nd ACM SIGSAC Conf. Comput. Commun. Secur.
  ident: ref37
  article-title: Deep learning with differential privacy
– ident: ref22
  doi: 10.1109/TITS.2020.3009289
– ident: ref11
  doi: 10.1145/3373376.3378486
– ident: ref16
  doi: 10.1109/TITS.2022.3168987
– start-page: 2505
  volume-title: Proc. 29th USENIX Secur. Symp.
  ident: ref25
  article-title: Delphi: A cryptographic inference service for neural networks
– ident: ref9
  doi: 10.1109/TCC.2018.2799219
– ident: ref13
  doi: 10.1109/TIFS.2021.3067468
– volume-title: The Traveling Salesman Problem: A Computational Study
  year: 2011
  ident: ref1
– ident: ref23
  doi: 10.1109/TSMC.2020.2969317
– ident: ref29
  doi: 10.1109/TCYB.2016.2647440
– ident: ref19
  doi: 10.1609/aaai.v36i2.20036
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representation
  ident: ref18
  article-title: Prediction poisoning: Towards defenses against DNN model stealing attacks
– ident: ref35
  doi: 10.1109/tdsc.2020.2971598
– ident: ref5
  doi: 10.1109/TDSC.2020.3029899
– ident: ref26
  doi: 10.14722/ndss.2020.24202
– ident: ref20
  doi: 10.1109/TITS.2019.2909109
– ident: ref12
  doi: 10.1109/MSEC.2019.2963021
– ident: ref2
  doi: 10.1109/TCYB.2019.2962865
– ident: ref14
  doi: 10.1109/SP.2017.12
– ident: ref17
  doi: 10.1109/SPW.2019.00020
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref4
  article-title: Neural combinatorial optimization with reinforcement learning
– ident: ref27
  doi: 10.14722/ndss.2020.23005
– start-page: 1651
  volume-title: Proc. 27th USENIX Secur. Symp.
  ident: ref33
  article-title: Gazelle: A low latency framework for secure neural network inference
– year: 2016
  ident: ref32
  article-title: CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy
– ident: ref8
  doi: 10.1109/TCC.2017.2732344
– ident: ref24
  doi: 10.1109/MNET.011.2000293
– ident: ref10
  doi: 10.1109/TCC.2018.2880181
– ident: ref36
  doi: 10.1109/TIFS.2019.2931068
– ident: ref39
  doi: 10.1109/TIFS.2019.2938875
– ident: ref7
  doi: 10.1109/TCC.2016.2647718
– ident: ref34
  doi: 10.1109/MNET.2019.1800362
– ident: ref30
  doi: 10.1109/TNNLS.2021.3068828
– ident: ref38
  doi: 10.1186/s42400-020-00057-3
SSID ssj0000851919
Score 2.2870545
Snippet The traveling salesman problem (TSP) is one of the classic combinatorial optimization problems, which can be widely used in intelligent transportation and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Cloud computing
Combinatorial analysis
Computational modeling
Data processing
Decoding
Neural network
Neural networks
Optimization
Outsourcing
Privacy
privacy-preserving service
Protocols
secret sharing
secure multi-party computation
Servers
Traveling salesman problem
TSP
Title A Privacy-Preserving Service Framework for Traveling Salesman Problem-Based Neural Combinatorial Optimization Network
URI https://ieeexplore.ieee.org/document/10157979
https://www.proquest.com/docview/2899209333
Volume 11
WOSCitedRecordID wos001124007100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-0018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000851919
  issn: 2168-7161
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4Y4sCF8RhiMFAOXDhka9O0aY5jYuI0dhjSblXzKJq0dWgviX-Pk6YTCIHErVLipqpjO3ZsfwjdyyAtmAkTwlgRECZjQ-y-IYEyYSrySAGdA5vgo1E6nYqxL1Z3tTDGGJd8Zrr20d3l66Xa2lAZSHgYc8FFAzU4T6pirX1AxZ4dRCjqq8hA9CaDQdeig3cjcAvimH4zPQ5L5YcCdlZl2Pzn95yiE398xP2K32fowJTnqFlDM2AvqRdo28fj1WyXqw9ikyysQijfsFcMeFhnZGE4suKJRSCau3GwFutFXgKtg5khj2DjNLYNPGBRWAXcaOukw57FL6BrFr6IE2a4ZPIWeh0-TQbPxCMsEEUF3RCujZYJdS19IjDtKRh_BQ6H5JoHhTYqyaOQ6SjOjdSRZNxQrWNw4Yo0NFTK6BIdlsvSXCEc54HQINFMMsWMilMYDQtdSEmZpolqo1798zPl249bFIx55tyQQGTArsyyK_PsaqOHPcV71Xrjj7kty54v8yrOtFGnZnDmhXOdWR-T2khOdP0L2Q06tm-vkvY66HCz2ppbdKR2m9l6def23Sdgsdke
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gV58i-szBy8esrZpsm2Ourgo6uphBW-leVQWtMo-BP-9kzQVRRS8FZohpV9mJpPMzAdwpKKs5DbuUM7LiHIlLHXrhkbaxpksEo1ynmwi7fezhwd5F4rVfS2MtdYnn9m2e_R3-eZFT91RGWp4LFKZylmYF5yzqC7X-jxScbsHGcvmMjKSJ4Nut-34wdsJBgZCsG_Ox7Op_DDB3q_0Vv75RauwHDaQ5LRGfA1mbLUOKw05Awm6ugHTU3I3Gr4V-p26NAtnEqpHEkwD6TU5WQQ3rWTgOIie_Hv0F-PnokJZTzRDz9DLGeJaeOCkOAsG0i5Mx1VLbtHaPIcyThzh08k34b53Puhe0MCxQDWTbEJTY43qMN_UJ0HnnqH71xhyqNSkUWms7hRJzE0iCqtMonhqmTECg7gyiy1TKtmCueqlsttARBFJgzrNFdfcapHh27g0pVKMG9bRLThpfn6uQwNyx4PxlPtAJJI5wpU7uPIAVwuOPyVe6-Ybf4zddPB8GVcj04K9BuA8qOc4d1Emc2c5yc4vYoeweDG4uc6vL_tXu7DkZqpT-PZgbjKa2n1Y0G-T4Xh04NfgB8-E3GU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Privacy-Preserving+Service+Framework+for+Traveling+Salesman+Problem-Based+Neural+Combinatorial+Optimization+Network&rft.jtitle=IEEE+transactions+on+cloud+computing&rft.au=Liu%2C+Jiao&rft.au=Li%2C+Xinghua&rft.au=Liu%2C+Ximeng&rft.au=Tang%2C+Jiawei&rft.date=2023-10-01&rft.issn=2168-7161&rft.eissn=2372-0018&rft.volume=11&rft.issue=4&rft.spage=3381&rft.epage=3395&rft_id=info:doi/10.1109%2FTCC.2023.3287552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCC_2023_3287552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-7161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-7161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-7161&client=summon