A Privacy-Preserving Service Framework for Traveling Salesman Problem-Based Neural Combinatorial Optimization Network
The traveling salesman problem (TSP) is one of the classic combinatorial optimization problems, which can be widely used in intelligent transportation and logistics field. Neural network has shown great potential in combinatorial optimization tasks. However, it faces privacy leakage when a TSP neura...
Uloženo v:
| Vydáno v: | IEEE transactions on cloud computing Ročník 11; číslo 4; s. 1 - 14 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-7161, 2372-0018 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The traveling salesman problem (TSP) is one of the classic combinatorial optimization problems, which can be widely used in intelligent transportation and logistics field. Neural network has shown great potential in combinatorial optimization tasks. However, it faces privacy leakage when a TSP neural combinatorial optimization network and user's data are directly outsourced to a cloud platform to provide and request service. In order to address the issue, this paper proposes a privacy-preserving service framework for a TSP-based neural combinatorial optimization network called PPSF. We first protect the service provider's model parameters and users' data by different split methods in multiple cloud servers, providing a secure outsourced mode for the participators in the PPSF framework. Then, in the secure outsourced mode, a series of secure computation protocols are designed for the cloud servers to support performing the secure computing in each service task. Moreover, it can also protect the process that the cloud servers respond to users after data processing and achieve private service result recovery. Finally, we prove that the proposed framework can realize privacy protection for TSP-based combinatorial optimization service and verify its utility and efficiency by experiments. |
|---|---|
| AbstractList | The traveling salesman problem (TSP) is one of the classic combinatorial optimization problems, which can be widely used in intelligent transportation and logistics field. Neural network has shown great potential in combinatorial optimization tasks. However, it faces privacy leakage when a TSP neural combinatorial optimization network and user's data are directly outsourced to a cloud platform to provide and request service. In order to address the issue, this article proposes a privacy-preserving service framework for a TSP-based neural combinatorial optimization network called PPSF. We first protect the service provider's model parameters and users’ data by different split methods in multiple cloud servers, providing a secure outsourced mode for the participators in the PPSF framework. Then, in the secure outsourced mode, a series of secure computation protocols are designed for the cloud servers to support performing the secure computing in each service task. Moreover, it can also protect the process that the cloud servers respond to users after data processing and achieve private service result recovery. Finally, we prove that the proposed framework can realize privacy protection for TSP-based combinatorial optimization service and verify its utility and efficiency by experiments. The traveling salesman problem (TSP) is one of the classic combinatorial optimization problems, which can be widely used in intelligent transportation and logistics field. Neural network has shown great potential in combinatorial optimization tasks. However, it faces privacy leakage when a TSP neural combinatorial optimization network and user's data are directly outsourced to a cloud platform to provide and request service. In order to address the issue, this paper proposes a privacy-preserving service framework for a TSP-based neural combinatorial optimization network called PPSF. We first protect the service provider's model parameters and users' data by different split methods in multiple cloud servers, providing a secure outsourced mode for the participators in the PPSF framework. Then, in the secure outsourced mode, a series of secure computation protocols are designed for the cloud servers to support performing the secure computing in each service task. Moreover, it can also protect the process that the cloud servers respond to users after data processing and achieve private service result recovery. Finally, we prove that the proposed framework can realize privacy protection for TSP-based combinatorial optimization service and verify its utility and efficiency by experiments. |
| Author | Ma, Siqi Liu, Jiao Tang, Jiawei Weng, Jian Li, Xinghua Liu, Ximeng |
| Author_xml | – sequence: 1 givenname: Jiao orcidid: 0000-0001-5292-5433 surname: Liu fullname: Liu, Jiao organization: State Key Laboratory of Integrated Services Networks, China – sequence: 2 givenname: Xinghua orcidid: 0000-0002-5583-4155 surname: Li fullname: Li, Xinghua organization: State Key Laboratory of Integrated Services Networks, China – sequence: 3 givenname: Ximeng orcidid: 0000-0002-4238-3295 surname: Liu fullname: Liu, Ximeng organization: College of Computer and Data Science, Fuzhou University, Fujian, China – sequence: 4 givenname: Jiawei surname: Tang fullname: Tang, Jiawei organization: State Key Laboratory of Integrated Services Networks, China – sequence: 5 givenname: Siqi surname: Ma fullname: Ma, Siqi organization: School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD, Australia – sequence: 6 givenname: Jian orcidid: 0000-0003-4067-8230 surname: Weng fullname: Weng, Jian organization: College of Cybersecurity/College of Information Science and Technology, Jinan University, Guangzhou, China |
| BookMark | eNp9kE1PwzAMhiM0JMbYnQOHSpw78rE2zXFUDJAmNolxrtLGRRltM5J2aPx60m0HxAFfbMt-XsvvJRo0pgGErgmeEILF3TpNJxRTNmE04VFEz9CQMk5DjEky8DWJk5CTmFygsXMb7COJiCBiiLpZsLJ6J4t9uLLgwO508x689rmAYG5lDV_GfgSlscHayh1Uh7mswNWy8azJK6jDe-lABS_QWVkFqalz3cjWWO275bbVtf6WrTaN32h7uSt0XsrKwfiUR-ht_rBOn8LF8vE5nS3CggrahlyBymOKOY85m-I4oYIVCY1zrjguFRSxZGSqWCQhVyyfcqBKRZjgMiFA85yN0O1Rd2vNZweuzTams40_mdFECIoF8zFC-LhVWOOchTLbWl1Lu88Iznp_M-9v1vubnfz1SPwHKXR7eLG1Ulf_gTdHUAPArzsk4oIL9gM5ZYsR |
| CODEN | ITCCF6 |
| CitedBy_id | crossref_primary_10_1088_1742_6596_2898_1_012032 |
| Cites_doi | 10.1109/TITS.2021.3055258 10.1109/JSAC.2019.2959183 10.1109/TITS.2015.2395536 10.1109/TITS.2020.3009289 10.1145/3373376.3378486 10.1109/TITS.2022.3168987 10.1109/TCC.2018.2799219 10.1109/TIFS.2021.3067468 10.1109/TSMC.2020.2969317 10.1109/TCYB.2016.2647440 10.1609/aaai.v36i2.20036 10.1109/tdsc.2020.2971598 10.1109/TDSC.2020.3029899 10.14722/ndss.2020.24202 10.1109/TITS.2019.2909109 10.1109/MSEC.2019.2963021 10.1109/TCYB.2019.2962865 10.1109/SP.2017.12 10.1109/SPW.2019.00020 10.14722/ndss.2020.23005 10.1109/TCC.2017.2732344 10.1109/MNET.011.2000293 10.1109/TCC.2018.2880181 10.1109/TIFS.2019.2931068 10.1109/TIFS.2019.2938875 10.1109/TCC.2016.2647718 10.1109/MNET.2019.1800362 10.1109/TNNLS.2021.3068828 10.1186/s42400-020-00057-3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCC.2023.3287552 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2372-0018 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TCC_2023_3287552 10157979 |
| Genre | orig-research |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE 4.4 AAYXX AGSQL CITATION EJD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-7dedb620776734068293c826b7d70fdec6a314d35aebd3b47e2dd5010f81e2bb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124007100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-7161 |
| IngestDate | Sun Nov 09 08:16:12 EST 2025 Sat Nov 29 04:11:02 EST 2025 Tue Nov 18 21:27:19 EST 2025 Wed Aug 27 02:14:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-7dedb620776734068293c826b7d70fdec6a314d35aebd3b47e2dd5010f81e2bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4238-3295 0000-0003-4067-8230 0000-0001-5292-5433 0000-0002-5583-4155 0000-0002-3771-2867 0000-0003-3479-5713 |
| PQID | 2899209333 |
| PQPubID | 2040413 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2899209333 crossref_citationtrail_10_1109_TCC_2023_3287552 crossref_primary_10_1109_TCC_2023_3287552 ieee_primary_10157979 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cloud computing |
| PublicationTitleAbbrev | TCC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 Applegate (ref1) 2011 ref15 ref14 ref36 ref31 ref30 ref11 ref10 ref2 ref17 ref39 ref16 ref38 ref19 Kool (ref21) Martxed (ref37) Bello (ref4) Jian (ref6) ref24 ref23 Orekondy (ref18) ref26 ref20 ref22 Mishra (ref25) ref27 Juvekar (ref33) ref29 ref8 ref7 ref9 ref3 Dowlin (ref32) 2016 ref5 |
| References_xml | – ident: ref15 doi: 10.1109/TITS.2021.3055258 – ident: ref31 doi: 10.1109/JSAC.2019.2959183 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref21 article-title: Attention, learn to solve routing problems! – ident: ref3 doi: 10.1109/TITS.2015.2395536 – volume-title: Proc. 24th ACM Conf. Comput. Commun. Secur. ident: ref6 article-title: Oblivious neural network predictions via MiniONN transformations – start-page: 308 volume-title: Proc. 23nd ACM SIGSAC Conf. Comput. Commun. Secur. ident: ref37 article-title: Deep learning with differential privacy – ident: ref22 doi: 10.1109/TITS.2020.3009289 – ident: ref11 doi: 10.1145/3373376.3378486 – ident: ref16 doi: 10.1109/TITS.2022.3168987 – start-page: 2505 volume-title: Proc. 29th USENIX Secur. Symp. ident: ref25 article-title: Delphi: A cryptographic inference service for neural networks – ident: ref9 doi: 10.1109/TCC.2018.2799219 – ident: ref13 doi: 10.1109/TIFS.2021.3067468 – volume-title: The Traveling Salesman Problem: A Computational Study year: 2011 ident: ref1 – ident: ref23 doi: 10.1109/TSMC.2020.2969317 – ident: ref29 doi: 10.1109/TCYB.2016.2647440 – ident: ref19 doi: 10.1609/aaai.v36i2.20036 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representation ident: ref18 article-title: Prediction poisoning: Towards defenses against DNN model stealing attacks – ident: ref35 doi: 10.1109/tdsc.2020.2971598 – ident: ref5 doi: 10.1109/TDSC.2020.3029899 – ident: ref26 doi: 10.14722/ndss.2020.24202 – ident: ref20 doi: 10.1109/TITS.2019.2909109 – ident: ref12 doi: 10.1109/MSEC.2019.2963021 – ident: ref2 doi: 10.1109/TCYB.2019.2962865 – ident: ref14 doi: 10.1109/SP.2017.12 – ident: ref17 doi: 10.1109/SPW.2019.00020 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref4 article-title: Neural combinatorial optimization with reinforcement learning – ident: ref27 doi: 10.14722/ndss.2020.23005 – start-page: 1651 volume-title: Proc. 27th USENIX Secur. Symp. ident: ref33 article-title: Gazelle: A low latency framework for secure neural network inference – year: 2016 ident: ref32 article-title: CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy – ident: ref8 doi: 10.1109/TCC.2017.2732344 – ident: ref24 doi: 10.1109/MNET.011.2000293 – ident: ref10 doi: 10.1109/TCC.2018.2880181 – ident: ref36 doi: 10.1109/TIFS.2019.2931068 – ident: ref39 doi: 10.1109/TIFS.2019.2938875 – ident: ref7 doi: 10.1109/TCC.2016.2647718 – ident: ref34 doi: 10.1109/MNET.2019.1800362 – ident: ref30 doi: 10.1109/TNNLS.2021.3068828 – ident: ref38 doi: 10.1186/s42400-020-00057-3 |
| SSID | ssj0000851919 |
| Score | 2.2870545 |
| Snippet | The traveling salesman problem (TSP) is one of the classic combinatorial optimization problems, which can be widely used in intelligent transportation and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Cloud computing Combinatorial analysis Computational modeling Data processing Decoding Neural network Neural networks Optimization Outsourcing Privacy privacy-preserving service Protocols secret sharing secure multi-party computation Servers Traveling salesman problem TSP |
| Title | A Privacy-Preserving Service Framework for Traveling Salesman Problem-Based Neural Combinatorial Optimization Network |
| URI | https://ieeexplore.ieee.org/document/10157979 https://www.proquest.com/docview/2899209333 |
| Volume | 11 |
| WOSCitedRecordID | wos001124007100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2372-0018 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000851919 issn: 2168-7161 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4Y4sCF8RhiMFAOXDhka9O0aY5jYuI0dhjSblXzKJq0dWgviX-Pk6YTCIHErVLipqpjO3ZsfwjdyyAtmAkTwlgRECZjQ-y-IYEyYSrySAGdA5vgo1E6nYqxL1Z3tTDGGJd8Zrr20d3l66Xa2lAZSHgYc8FFAzU4T6pirX1AxZ4dRCjqq8hA9CaDQdeig3cjcAvimH4zPQ5L5YcCdlZl2Pzn95yiE398xP2K32fowJTnqFlDM2AvqRdo28fj1WyXqw9ikyysQijfsFcMeFhnZGE4suKJRSCau3GwFutFXgKtg5khj2DjNLYNPGBRWAXcaOukw57FL6BrFr6IE2a4ZPIWeh0-TQbPxCMsEEUF3RCujZYJdS19IjDtKRh_BQ6H5JoHhTYqyaOQ6SjOjdSRZNxQrWNw4Yo0NFTK6BIdlsvSXCEc54HQINFMMsWMilMYDQtdSEmZpolqo1798zPl249bFIx55tyQQGTArsyyK_PsaqOHPcV71Xrjj7kty54v8yrOtFGnZnDmhXOdWR-T2khOdP0L2Q06tm-vkvY66HCz2ppbdKR2m9l6def23Sdgsdke |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gV58i-szBy8esrZpsm2Ourgo6uphBW-leVQWtMo-BP-9kzQVRRS8FZohpV9mJpPMzAdwpKKs5DbuUM7LiHIlLHXrhkbaxpksEo1ynmwi7fezhwd5F4rVfS2MtdYnn9m2e_R3-eZFT91RGWp4LFKZylmYF5yzqC7X-jxScbsHGcvmMjKSJ4Nut-34wdsJBgZCsG_Ox7Op_DDB3q_0Vv75RauwHDaQ5LRGfA1mbLUOKw05Awm6ugHTU3I3Gr4V-p26NAtnEqpHEkwD6TU5WQQ3rWTgOIie_Hv0F-PnokJZTzRDz9DLGeJaeOCkOAsG0i5Mx1VLbtHaPIcyThzh08k34b53Puhe0MCxQDWTbEJTY43qMN_UJ0HnnqH71xhyqNSkUWms7hRJzE0iCqtMonhqmTECg7gyiy1TKtmCueqlsttARBFJgzrNFdfcapHh27g0pVKMG9bRLThpfn6uQwNyx4PxlPtAJJI5wpU7uPIAVwuOPyVe6-Ybf4zddPB8GVcj04K9BuA8qOc4d1Emc2c5yc4vYoeweDG4uc6vL_tXu7DkZqpT-PZgbjKa2n1Y0G-T4Xh04NfgB8-E3GU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Privacy-Preserving+Service+Framework+for+Traveling+Salesman+Problem-Based+Neural+Combinatorial+Optimization+Network&rft.jtitle=IEEE+transactions+on+cloud+computing&rft.au=Liu%2C+Jiao&rft.au=Li%2C+Xinghua&rft.au=Liu%2C+Ximeng&rft.au=Tang%2C+Jiawei&rft.date=2023-10-01&rft.issn=2168-7161&rft.eissn=2372-0018&rft.volume=11&rft.issue=4&rft.spage=3381&rft.epage=3395&rft_id=info:doi/10.1109%2FTCC.2023.3287552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCC_2023_3287552 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-7161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-7161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-7161&client=summon |