A Multimodal Dynamic Hand Gesture Recognition Based on Radar-Vision Fusion

Regarding increasingly complex scenarios in hand gesture recognition (HGR), it is challenging to implement a reliable HGR due to the nonadaptability of individual sensors to the environment and the discrepancy of personal habits. Multisensor fusion has been deemed an effective way to overcome the li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 72; S. 1 - 15
Hauptverfasser: Liu, Haoming, Liu, Zhenyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Regarding increasingly complex scenarios in hand gesture recognition (HGR), it is challenging to implement a reliable HGR due to the nonadaptability of individual sensors to the environment and the discrepancy of personal habits. Multisensor fusion has been deemed an effective way to overcome the limitations of a single sensor. However, there is a lack of research on HGR to effectively establish bridges linking multimodal heterogeneous information. To address this issue, we propose a novel multimodal dynamic HGR method based on a two-branch fusion deformable network with Gram matching. First, a time-synchronized method is designed to preprocess the multimodal data. Second, a two-branch network is proposed to implement gesture classification based on radar-vision fusion. The input convolution is replaced by the deformable convolution to improve the generalization of gesture motion modeling. The long short-term memory (LSTM) unit is used to extract the temporal features of dynamic hand gestures. Third, Gram matching is presented as a loss function to mine high-dimensional heterogeneous information and maintain the integrity of radar-vision fusion. The experimental results indicate that the proposed method effectively improves the adaptability of the classifier to complex environments and exhibits satisfactory robustness to multiple subjects. Furthermore, ablation analysis shows that deformable convolution and Gram loss not only provide reliable gesture recognition but also enhance the generalization ability of the proposed methods in different field-of-view scenarios.
AbstractList Regarding increasingly complex scenarios in hand gesture recognition (HGR), it is challenging to implement a reliable HGR due to the nonadaptability of individual sensors to the environment and the discrepancy of personal habits. Multisensor fusion has been deemed an effective way to overcome the limitations of a single sensor. However, there is a lack of research on HGR to effectively establish bridges linking multimodal heterogeneous information. To address this issue, we propose a novel multimodal dynamic HGR method based on a two-branch fusion deformable network with Gram matching. First, a time-synchronized method is designed to preprocess the multimodal data. Second, a two-branch network is proposed to implement gesture classification based on radar–vision fusion. The input convolution is replaced by the deformable convolution to improve the generalization of gesture motion modeling. The long short-term memory (LSTM) unit is used to extract the temporal features of dynamic hand gestures. Third, Gram matching is presented as a loss function to mine high-dimensional heterogeneous information and maintain the integrity of radar–vision fusion. The experimental results indicate that the proposed method effectively improves the adaptability of the classifier to complex environments and exhibits satisfactory robustness to multiple subjects. Furthermore, ablation analysis shows that deformable convolution and Gram loss not only provide reliable gesture recognition but also enhance the generalization ability of the proposed methods in different field-of-view scenarios.
Author Liu, Zhenyu
Liu, Haoming
Author_xml – sequence: 1
  givenname: Haoming
  orcidid: 0000-0002-6467-9599
  surname: Liu
  fullname: Liu, Haoming
  email: liuhaomingdut@gmail.com
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Zhenyu
  orcidid: 0000-0002-4205-6067
  surname: Liu
  fullname: Liu, Zhenyu
  email: zhenyuliu@gdut.edu.cn
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
BookMark eNp9UD1PwzAUtFCRaAs7A0Mk5hTbib_GUugHaoVUFVbLiW3kKk2KnQz99zhqB8TAdKenu_fu3QgM6qY2ANwjOEEIiqfdajPBEGeTDJNMQHoFhogQlgpK8QAMIUQ8FTmhN2AUwh5CyGjOhuBtmmy6qnWHRqsqeTnV6uDKZKlqnSxMaDtvkq0pm6_ata6pk2cVjE4i2SqtfPrpQj-ddz3cgmurqmDuLjgGH_PX3WyZrt8Xq9l0nZZY4DZlRUELQbktGDc8EkEJJoYYy22pubY6phTY0lxrUlJeiJxBSCAzmGOb42wMHs97j7757mJIuW86X8eTEjMuMkoYRVFFz6rSNyF4Y2XpWtU_0XrlKomg7HuTsTfZ9yYvvUUj_GM8endQ_vSf5eFsccaYX3JIc8RR9gP5PXkZ
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_JSEN_2023_3276798
crossref_primary_10_1109_TCYB_2025_3525652
crossref_primary_10_1109_ACCESS_2025_3529025
crossref_primary_10_1109_TIM_2024_3412196
crossref_primary_10_1109_TIM_2025_3582311
crossref_primary_10_1007_s11760_024_03664_6
crossref_primary_10_1109_JIOT_2025_3585249
crossref_primary_10_1109_JSEN_2024_3481964
crossref_primary_10_1007_s13735_025_00363_x
crossref_primary_10_1109_TCE_2025_3557084
crossref_primary_10_1109_TIM_2023_3307768
crossref_primary_10_1109_ACCESS_2024_3456436
Cites_doi 10.1109/TSMCC.2007.893280
10.1145/2897824.2925953
10.1109/TGRS.2021.3093334
10.1109/JSEN.2022.3181518
10.1109/TIM.2021.3109732
10.1145/2157689.2157743
10.1109/LGRS.2021.3086136
10.1109/ACCESS.2017.2684186
10.1109/34.799904
10.1109/MWSCAS.2014.6908353
10.1109/CVPR.1993.341109
10.1109/TIM.2019.2909249
10.1109/TIM.2015.2498560
10.1109/THMS.2020.3036637
10.1109/LRA.2021.3089999
10.1109/34.735811
10.1109/TCSVT.2015.2469551
10.1109/MIM.2020.9082794
10.1109/JERM.2019.2949456
10.1109/ICIT46573.2021.9453703
10.1109/JSEN.2020.2994292
10.1109/THMS.2021.3131675
10.1109/MIM.2014.6825388
10.1109/TIE.2003.814758
10.1109/JSEN.2020.3014276
10.3390/rs13061064
10.1109/ICISET54810.2022.9775918
10.1109/FG.2015.7163132
10.1109/TGRS.2020.3010880
10.1201/9781420064995-c34
10.3389/fpubh.2020.582191
10.1109/ICCV.1998.710744
10.1109/RadarConf2147009.2021.9455238
10.1109/JSEN.2018.2877978
10.1109/JSAC.2022.3155526
10.1109/LGRS.2022.3217390
10.1109/34.598226
10.1007/1-4020-4295-7_11
10.1145/2984511.2984565
10.1109/ICCVW.2017.373
10.1109/ACCESS.2020.2994281
10.1109/TIM.2022.3164162
10.1109/TMTT.2020.3031619
10.1109/TII.2011.2172450
10.1109/JIOT.2021.3072169
10.1109/CVPR.2016.90
10.1109/ROMAN.2012.6343787
10.1109/TAP.1986.1143830
10.1109/LSP.2020.3026942
10.1016/j.neucom.2022.04.035
10.1109/VNC.2018.8628409
10.1109/JRA.1987.1087109
10.1109/JSEN.2020.3034911
10.1109/MSP.2019.2903715
10.1109/TIM.2021.3132924
10.1109/TGRS.2021.3122332
10.3390/rs13183791
10.1109/MIM.2015.7066676
10.1109/ACCESS.2021.3056878
10.1109/TIP.2019.2936111
10.1109/JSEN.2022.3145844
10.1109/TIM.2022.3181305
10.1109/VTC2022-Spring54318.2022.9860976
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3253906
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 15
ExternalDocumentID 10_1109_TIM_2023_3253906
10064181
Genre orig-research
GrantInformation_xml – fundername: Guangdong Provincial Science and Technology Plan Project
  grantid: 2021A0505080014
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515012873
  funderid: 10.13039/501100021171
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-7bb6b968fb78e896896525e5ef8fcd8dfd45692f64dd5c68b94700507e282f423
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001012063600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:13:23 EDT 2025
Tue Nov 18 22:33:19 EST 2025
Sat Nov 29 07:58:00 EST 2025
Wed Aug 27 02:03:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-7bb6b968fb78e896896525e5ef8fcd8dfd45692f64dd5c68b94700507e282f423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4205-6067
0000-0002-6467-9599
PQID 2789365761
PQPubID 85462
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TIM_2023_3253906
ieee_primary_10064181
proquest_journals_2789365761
crossref_primary_10_1109_TIM_2023_3253906
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
Sun (ref18) 2021
Zhang (ref39) 2020
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
Gatys (ref24); 28
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
ref23
ref67
ref26
ref25
ref20
Kulemin (ref55) 2003
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref28
  doi: 10.1109/TSMCC.2007.893280
– ident: ref19
  doi: 10.1145/2897824.2925953
– ident: ref26
  doi: 10.1109/TGRS.2021.3093334
– ident: ref41
  doi: 10.1109/JSEN.2022.3181518
– ident: ref11
  doi: 10.1109/TIM.2021.3109732
– ident: ref42
  doi: 10.1145/2157689.2157743
– ident: ref44
  doi: 10.1109/LGRS.2021.3086136
– ident: ref22
  doi: 10.1109/ACCESS.2017.2684186
– ident: ref21
  doi: 10.1109/34.799904
– ident: ref53
  doi: 10.1109/MWSCAS.2014.6908353
– ident: ref34
  doi: 10.1109/CVPR.1993.341109
– ident: ref49
  doi: 10.1109/TIM.2019.2909249
– ident: ref15
  doi: 10.1109/TIM.2015.2498560
– ident: ref48
  doi: 10.1109/THMS.2020.3036637
– ident: ref8
  doi: 10.1109/LRA.2021.3089999
– year: 2020
  ident: ref39
  article-title: MediaPipe hands: On-device real-time hand tracking
  publication-title: arXiv:2006.10214
– ident: ref35
  doi: 10.1109/34.735811
– ident: ref13
  doi: 10.1109/TCSVT.2015.2469551
– ident: ref2
  doi: 10.1109/MIM.2020.9082794
– ident: ref56
  doi: 10.1109/JERM.2019.2949456
– ident: ref61
  doi: 10.1109/ICIT46573.2021.9453703
– ident: ref43
  doi: 10.1109/JSEN.2020.2994292
– ident: ref5
  doi: 10.1109/THMS.2021.3131675
– ident: ref14
  doi: 10.1109/MIM.2014.6825388
– ident: ref37
  doi: 10.1109/TIE.2003.814758
– ident: ref57
  doi: 10.1109/JSEN.2020.3014276
– ident: ref59
  doi: 10.3390/rs13061064
– ident: ref16
  doi: 10.1109/ICISET54810.2022.9775918
– ident: ref62
  doi: 10.1109/FG.2015.7163132
– ident: ref23
  doi: 10.1109/TGRS.2020.3010880
– ident: ref33
  doi: 10.1201/9781420064995-c34
– ident: ref9
  doi: 10.3389/fpubh.2020.582191
– ident: ref36
  doi: 10.1109/ICCV.1998.710744
– ident: ref51
  doi: 10.1109/RadarConf2147009.2021.9455238
– ident: ref6
  doi: 10.1109/JSEN.2018.2877978
– ident: ref12
  doi: 10.1109/JSAC.2022.3155526
– ident: ref47
  doi: 10.1109/LGRS.2022.3217390
– ident: ref27
  doi: 10.1109/34.598226
– ident: ref17
  doi: 10.1007/1-4020-4295-7_11
– ident: ref64
  doi: 10.1145/2984511.2984565
– ident: ref67
  doi: 10.1109/ICCVW.2017.373
– ident: ref50
  doi: 10.1109/ACCESS.2020.2994281
– ident: ref10
  doi: 10.1109/TIM.2022.3164162
– ident: ref29
  doi: 10.1109/TMTT.2020.3031619
– ident: ref38
  doi: 10.1109/TII.2011.2172450
– ident: ref46
  doi: 10.1109/JIOT.2021.3072169
– ident: ref66
  doi: 10.1109/CVPR.2016.90
– ident: ref40
  doi: 10.1109/ROMAN.2012.6343787
– ident: ref45
  doi: 10.1109/TAP.1986.1143830
– ident: ref54
  doi: 10.1109/LSP.2020.3026942
– year: 2021
  ident: ref18
  article-title: Signal processing algorithms for gesture recognition using millimeter-wave radar technology
– ident: ref65
  doi: 10.1016/j.neucom.2022.04.035
– ident: ref3
  doi: 10.1109/VNC.2018.8628409
– ident: ref63
  doi: 10.1109/JRA.1987.1087109
– volume: 28
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Texture synthesis using convolutional neural networks
– ident: ref60
  doi: 10.1109/JSEN.2020.3034911
– ident: ref4
  doi: 10.1109/MSP.2019.2903715
– volume-title: Millimeter-Wave Radar Targets and Clutter
  year: 2003
  ident: ref55
– ident: ref30
  doi: 10.1109/TIM.2021.3132924
– ident: ref32
  doi: 10.1109/TGRS.2021.3122332
– ident: ref52
  doi: 10.3390/rs13183791
– ident: ref1
  doi: 10.1109/MIM.2015.7066676
– ident: ref58
  doi: 10.1109/ACCESS.2021.3056878
– ident: ref25
  doi: 10.1109/TIP.2019.2936111
– ident: ref31
  doi: 10.1109/JSEN.2022.3145844
– ident: ref7
  doi: 10.1109/TIM.2022.3181305
– ident: ref20
  doi: 10.1109/VTC2022-Spring54318.2022.9860976
SSID ssj0007647
Score 2.4971404
Snippet Regarding increasingly complex scenarios in hand gesture recognition (HGR), it is challenging to implement a reliable HGR due to the nonadaptability of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Ablation
Cameras
Convolution
Deep learning
Deformation
Feature extraction
Field of view
Formability
frequency-modulated continuous-wave (FMCW)
Gesture recognition
hand gesture recognition (HGR)
Hidden Markov models
Matching
millimeter-wave (MMW)
multimodal fusion
Multisensor fusion
Radar
Reliability
Sensors
Time synchronization
Title A Multimodal Dynamic Hand Gesture Recognition Based on Radar-Vision Fusion
URI https://ieeexplore.ieee.org/document/10064181
https://www.proquest.com/docview/2789365761
Volume 72
WOSCitedRecordID wos001012063600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aFPTgoypWq-TgxcO23Udex_qoVbBIqdLbspsHCLor266_30l2Wyqi4GnnkFnCTCYzk-SbQehC0CSE3S_xIqFTLwoD6QlCAs9IIyhPmeK8ajbBRiM-nYqnGqzusDBaa_f4THcs6e7yVS5Le1QGFg4O1LdA63XGWAXWWm67jEZVgUwfLBjCgsWdZE90J_ePHdsmvBMGBHJ8-s0HuaYqP3Zi514Gu_-c2B7aqeNI3K8Uv4_WdNZE2yvVBZto073ulLMD9NDHDmj7nivguama0ONhkil8B3MpC43Hi4dEeYavwLMpDMQ4UUnhvTj4OR6U9nOInge3k-uhVzdR8GQggrnH0pSmIHaTMq45EIKSgGiiDTdScWUUyEoEhkZKEQnqERGzRWGYhmTMQLB1hBpZnuljhDURUsjED6UUkZ8kHHggvVYGbJqEkrVQdyHWWNYVxm2ji7fYZRo9EYMiYquIuFZEC10uOT6q6hp_jD20gl8ZV8m8hdoL1cW1_c1ii-8NKeRS_skvbKdoy_69Ok1po8a8KPUZ2pCf89dZce6W1hfx5ckG
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQAAEHHgPEYEAOXDh0o4-0yXE8xgbbhKaBdqvaPCQk6NAe_H6ctJuGEEic6kOsRnYc20k-G-CCh4mPu1_iBFylTuB7wuGUeo4WmocsjSRjebOJqNdjwyF_KsDqFgujlLKPz1TNkPYuX47EzByVoYWjA3UN0HqVBoHn5nCtxcYbhUFeItNFG8bAYH4recXrg3a3ZhqF13yPYpYffvNCtq3Kj73YOpjmzj-ntgvbRSRJGrnq92BFZWXYWqovWIZ1-75TTPbhoUEs1PZ9JJHnNm9DT1pJJsk9zmU2VqQ_f0o0ysg1-jZJkOgnMhk7LxaATpoz8zmA5-bd4KblFG0UHOFxb-pEaRqmKHidRkwxJHhIPaqo0kwLyaSWKCvu6TCQkgpUEA8iUxYmUpiOaQy3DqGUjTJ1BERRLrhIXF8IHrhJwpAHE2yp0aqpL6IK1OdijUVRY9y0uniLba5xxWNURGwUEReKqMDlguMjr6_xx9gDI_ilcbnMK1Cdqy4uLHASG4SvH2I25R7_wnYOG61BtxN32r3HE9g0f8rPVqpQmo5n6hTWxOf0dTI-s8vsC5P3zE0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multimodal+Dynamic+Hand+Gesture+Recognition+Based+on+Radar%E2%80%93Vision+Fusion&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Liu%2C+Haoming&rft.au=Liu%2C+Zhenyu&rft.date=2023&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=72&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTIM.2023.3253906&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3253906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon