Semantic Communications for Image Recovery and Classification via Deep Joint Source and Channel Coding

With the recent advancements in edge artificial intelligence (AI), future sixth-generation (6G) networks need to support new AI tasks such as classification and clustering apart from data recovery. Motivated by the success of deep learning, the semantic-aware and task-oriented communications with de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications Jg. 23; H. 8; S. 8388 - 8404
Hauptverfasser: Lyu, Zhonghao, Zhu, Guangxu, Xu, Jie, Ai, Bo, Cui, Shuguang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1276, 1558-2248
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the recent advancements in edge artificial intelligence (AI), future sixth-generation (6G) networks need to support new AI tasks such as classification and clustering apart from data recovery. Motivated by the success of deep learning, the semantic-aware and task-oriented communications with deep joint source and channel coding (JSCC) have emerged as new paradigm shifts in 6G from the conventional data-oriented communications with separate source and channel coding (SSCC). However, most existing works focused on the deep JSCC designs for one task of data recovery or AI task execution independently, which cannot be transferred to other unintended tasks. Differently, this paper investigates the JSCC semantic communications to support multi-task services, by performing the image data recovery and classification task execution simultaneously. First, we propose a new end-to-end deep JSCC framework by unifying the coding rate reduction maximization and the mean square error (MSE) minimization in the loss function. Here, the coding rate reduction maximization facilitates the learning of discriminative features for enabling to perform classification tasks directly in the feature space, and the MSE minimization helps the learning of informative features for high-quality image data recovery. Next, to further improve the robustness against variational wireless channels, we propose a new gated deep JSCC design, in which a gated net is incorporated for adaptively pruning the output features to adjust their dimensions based on channel conditions. Finally, we present extensive numerical experiments to validate the performance of our proposed deep JSCC designs as compared to various benchmark schemes. It is shown that our proposed designs simultaneously provide efficient multi-task services, and the proposed gated deep JSCC framework efficiently reduces the communication overhead with only marginal performance loss. It is also shown that performing the classification task on the feature space via coding rate reduction maximization is able to better defend the label corruption than the traditional label-fitting methods.
AbstractList With the recent advancements in edge artificial intelligence (AI), future sixth-generation (6G) networks need to support new AI tasks such as classification and clustering apart from data recovery. Motivated by the success of deep learning, the semantic-aware and task-oriented communications with deep joint source and channel coding (JSCC) have emerged as new paradigm shifts in 6G from the conventional data-oriented communications with separate source and channel coding (SSCC). However, most existing works focused on the deep JSCC designs for one task of data recovery or AI task execution independently, which cannot be transferred to other unintended tasks. Differently, this paper investigates the JSCC semantic communications to support multi-task services, by performing the image data recovery and classification task execution simultaneously. First, we propose a new end-to-end deep JSCC framework by unifying the coding rate reduction maximization and the mean square error (MSE) minimization in the loss function. Here, the coding rate reduction maximization facilitates the learning of discriminative features for enabling to perform classification tasks directly in the feature space, and the MSE minimization helps the learning of informative features for high-quality image data recovery. Next, to further improve the robustness against variational wireless channels, we propose a new gated deep JSCC design, in which a gated net is incorporated for adaptively pruning the output features to adjust their dimensions based on channel conditions. Finally, we present extensive numerical experiments to validate the performance of our proposed deep JSCC designs as compared to various benchmark schemes. It is shown that our proposed designs simultaneously provide efficient multi-task services, and the proposed gated deep JSCC framework efficiently reduces the communication overhead with only marginal performance loss. It is also shown that performing the classification task on the feature space via coding rate reduction maximization is able to better defend the label corruption than the traditional label-fitting methods.
Author Lyu, Zhonghao
Xu, Jie
Zhu, Guangxu
Ai, Bo
Cui, Shuguang
Author_xml – sequence: 1
  givenname: Zhonghao
  orcidid: 0000-0002-0980-1395
  surname: Lyu
  fullname: Lyu, Zhonghao
  email: zhonghaolyu@link.cuhk.edu.cn
  organization: Future Network of Intelligence Institute (FNii) and the School of Science and Engineering (SSE), The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
– sequence: 2
  givenname: Guangxu
  orcidid: 0000-0001-9532-9201
  surname: Zhu
  fullname: Zhu, Guangxu
  email: gxzhu@sribd.cn
  organization: Shenzhen Research Institute of Big Data, Shenzhen, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0002-4854-8839
  surname: Xu
  fullname: Xu, Jie
  email: xujie@cuhk.edu.cn
  organization: School of Science and Engineering (SSE), Future Network of Intelligence Institute (FNii), The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
– sequence: 4
  givenname: Bo
  orcidid: 0000-0001-6850-0595
  surname: Ai
  fullname: Ai, Bo
  email: boai@bjtu.edu.cn
  organization: State Key Laboratory of Advanced Rail Autonomous Operation and the School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
– sequence: 5
  givenname: Shuguang
  orcidid: 0000-0003-2608-775X
  surname: Cui
  fullname: Cui, Shuguang
  email: shuguangcui@cuhk.edu.cn
  organization: School of Science and Engineering (SSE), Future Network of Intelligence Institute (FNii), The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
BookMark eNp9kDtPwzAURi0EEhTYGRgsMaf4ETv2iMKrqBISDzFGjntdjBq72Gkl_j0p7YAYmO4dvnO_qzNC-yEGQOiMkjGlRF--vNVjRhgfc15qzskeOqJCqIKxUu1vdi4Lyip5iEY5fxBCKynEEXLP0JnQe4vr2HWr4K3pfQwZu5jwpDNzwE9g4xrSFzZhhuuFydm7XQyvvcHXAEv8EH3o8XNcJQvb4LsJARbD2ZkP8xN04Mwiw-luHqPX25uX-r6YPt5N6qtpYZlmfVEpVXJmNW0ttNrptlJla5TgTmgqpVJ2ZpxlxBIubMWl01qKqnJOtQLaVvJjdLG9u0zxcwW5bz6Gl8JQ2XCih46y0psU2aZsijkncM0y-c6kr4aSZmOzGWw2G5vNzuaAyD-I9f2Pgz4Zv_gPPN-CHgB-9XCliGT8G-4ZhBM
CODEN ITWCAX
CitedBy_id crossref_primary_10_1016_j_dcan_2025_06_010
crossref_primary_10_1016_j_phycom_2025_102764
crossref_primary_10_1109_TWC_2025_3542798
crossref_primary_10_1109_LWC_2025_3548084
crossref_primary_10_3233_XST_240189
crossref_primary_10_1109_LCOMM_2025_3544882
crossref_primary_10_1109_JSAC_2025_3536557
crossref_primary_10_1109_TMC_2025_3540300
crossref_primary_10_1109_ACCESS_2025_3593341
crossref_primary_10_1109_TWC_2024_3483314
crossref_primary_10_1007_s10922_025_09927_y
crossref_primary_10_1109_TWC_2025_3552255
crossref_primary_10_3390_app15094608
crossref_primary_10_1109_TWC_2025_3527014
crossref_primary_10_1016_j_phycom_2025_102836
crossref_primary_10_1109_TCOMM_2025_3541027
crossref_primary_10_1109_TVT_2025_3540603
crossref_primary_10_1007_s40435_025_01849_6
crossref_primary_10_1016_j_neucom_2025_131347
crossref_primary_10_1109_TWC_2024_3510418
crossref_primary_10_1016_j_jfranklin_2025_107598
crossref_primary_10_1109_LWC_2025_3527145
Cites_doi 10.1109/JSTSP.2022.3226836
10.1109/CVPR.2019.00939
10.3390/e24040456
10.1109/TCCN.2019.2919300
10.1109/CVPR.2016.90
10.1109/JSAC.2023.3288231
10.1109/JSAC.2021.3087240
10.1109/LWC.2021.3136045
10.1109/ICRA46639.2022.9811825
10.1109/TWC.2020.2970707
10.1109/TIP.2003.819861
10.1002/0471200611
10.1109/CVPRW.2018.00143
10.1109/GCWkshps58843.2023.10464706
10.1007/s11432-022-3652-2
10.1109/GLOBECOM48099.2022.10000850
10.1109/JSAC.2022.3221991
10.1145/584091.584093
10.1109/JSAC.2022.3180802
10.1109/TPAMI.2007.1085
10.1109/JSAC.2022.3221999
10.1109/JIOT.2021.3103320
10.1109/JSAC.2020.3036955
10.1109/TSP.2021.3071210
10.1109/JSAC.2021.3126087
10.1109/JSAC.2022.3223408
10.1016/j.comnet.2021.107930
10.1109/JSAC.2021.3126076
10.1109/TWC.2022.3191118
10.3390/technologies9010002
10.1109/ICCC52777.2021.9580301
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2023.3349330
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 8404
ExternalDocumentID 10_1109_TWC_2023_3349330
10388062
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U2001208; 92267202; 62293482; 62001310; 62221001
  funderid: 10.13039/501100001809
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2022A1515010109
  funderid: 10.13039/501100021171
– fundername: National Key Research and Development Program of China; National Key Research and Development Program
  grantid: 2021YFB2900301; 2020YFB1806604; 2021YFB3901302
  funderid: 10.13039/501100012166
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2022JBQY004
  funderid: 10.13039/501100012226
– fundername: Internal Project Fund from Shenzhen Research Institute of Big Data
  grantid: J00120230001
– fundername: Fundamental Research Funds for the Central Universities (Collaborative Innovation Center of Railway Traffic Safety)
  grantid: 2022JBXT001
– fundername: Basic Research Project of Hetao Shenzhen-HK S&T Cooperation Zone
  grantid: HZQB-KCZYZ-2021067
– fundername: Shenzhen Outstanding Talents Training Fund
  grantid: 202002
– fundername: Guangdong Research Projects
  grantid: 2017ZT07X152; 2019CX01X104
– fundername: Shenzhen Municipal Fundamental Research Program; Shenzhen Fundamental Research Program
  grantid: JCYJ20210324133405015
  funderid: 10.13039/501100017607
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-788432c91bceb9f9b784ba853f5916688cdafc20c035c736f996577ff8b5ebb63
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329887800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 12:30:22 EDT 2025
Sat Nov 29 06:23:59 EST 2025
Tue Nov 18 22:11:35 EST 2025
Wed Aug 27 02:32:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-788432c91bceb9f9b784ba853f5916688cdafc20c035c736f996577ff8b5ebb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0980-1395
0000-0002-4854-8839
0000-0001-9532-9201
0000-0003-2608-775X
0000-0001-6850-0595
PQID 3092924796
PQPubID 105736
PageCount 17
ParticipantIDs proquest_journals_3092924796
ieee_primary_10388062
crossref_citationtrail_10_1109_TWC_2023_3349330
crossref_primary_10_1109_TWC_2023_3349330
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref2
ref1
Ma (ref6) 2023
ref17
ref16
ref38
ref19
ref18
Zhang (ref25) 2022
Krizhevsky (ref37) 2009
ref24
ref23
ref26
ref20
ref22
ref21
LeCun (ref36)
ref28
ref29
ref8
ref7
Yu (ref27); 33
Goodfellow (ref34) 2016
ref9
ref4
Xue (ref32)
ref3
ref5
References_xml – ident: ref8
  doi: 10.1109/JSTSP.2022.3226836
– ident: ref33
  doi: 10.1109/CVPR.2019.00939
– ident: ref28
  doi: 10.3390/e24040456
– ident: ref11
  doi: 10.1109/TCCN.2019.2919300
– year: 2023
  ident: ref6
  article-title: A theory for semantic communications
  publication-title: arXiv:2303.05181
– volume-title: Deep Learning
  year: 2016
  ident: ref34
– ident: ref38
  doi: 10.1109/CVPR.2016.90
– ident: ref17
  doi: 10.1109/JSAC.2023.3288231
– ident: ref16
  doi: 10.1109/JSAC.2021.3087240
– ident: ref22
  doi: 10.1109/LWC.2021.3136045
– ident: ref23
  doi: 10.1109/ICRA46639.2022.9811825
– volume: 33
  start-page: 9422
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Learning diverse and discriminative representations via the principle of maximal coding rate reduction
– ident: ref29
  doi: 10.1109/TWC.2020.2970707
– ident: ref18
  doi: 10.1109/TIP.2003.819861
– ident: ref30
  doi: 10.1002/0471200611
– ident: ref35
  doi: 10.1109/CVPRW.2018.00143
– year: 2009
  ident: ref37
  article-title: Learning multiple layers of features from tiny images
– ident: ref1
  doi: 10.1109/GCWkshps58843.2023.10464706
– ident: ref4
  doi: 10.1007/s11432-022-3652-2
– ident: ref24
  doi: 10.1109/GLOBECOM48099.2022.10000850
– ident: ref10
  doi: 10.1109/JSAC.2022.3221991
– ident: ref9
  doi: 10.1145/584091.584093
– ident: ref14
  doi: 10.1109/JSAC.2022.3180802
– ident: ref26
  doi: 10.1109/TPAMI.2007.1085
– ident: ref13
  doi: 10.1109/JSAC.2022.3221999
– start-page: 24851
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref32
  article-title: Investigating why contrastive learning benefits robustness against label noise
– ident: ref2
  doi: 10.1109/JIOT.2021.3103320
– ident: ref19
  doi: 10.1109/JSAC.2020.3036955
– ident: ref15
  doi: 10.1109/TSP.2021.3071210
– ident: ref20
  doi: 10.1109/JSAC.2021.3126087
– ident: ref7
  doi: 10.1109/JSAC.2022.3223408
– volume-title: The MNIST Database of Handwritten Digits
  ident: ref36
– ident: ref5
  doi: 10.1016/j.comnet.2021.107930
– ident: ref3
  doi: 10.1109/JSAC.2021.3126076
– ident: ref21
  doi: 10.1109/TWC.2022.3191118
– ident: ref31
  doi: 10.3390/technologies9010002
– year: 2022
  ident: ref25
  article-title: A unified multi-task semantic communication system for multimodal data
  publication-title: arXiv:2209.07689
– ident: ref12
  doi: 10.1109/ICCC52777.2021.9580301
SSID ssj0017655
Score 2.6342294
Snippet With the recent advancements in edge artificial intelligence (AI), future sixth-generation (6G) networks need to support new AI tasks such as classification...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8388
SubjectTerms Artificial intelligence
Channel coding
Classification
Clustering
Data mining
Data recovery
deep joint source and channel coding (JSCC)
Deep learning
Edge artificial intelligence (AI)
Error reduction
Feature extraction
Image coding
Image quality
Labels
Logic gates
Machine learning
Maximization
Optimization
semantic communications
Semantics
Task analysis
task-oriented communications
Title Semantic Communications for Image Recovery and Classification via Deep Joint Source and Channel Coding
URI https://ieeexplore.ieee.org/document/10388062
https://www.proquest.com/docview/3092924796
Volume 23
WOSCitedRecordID wos001329887800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjBnxOnU3Lw4qFb26RJc5SpqMgQNnG30qQvOHDd2LqB_71J2o0NUfDWw8uj5Evy3kveex9C15xEEsKUelyGyrMtuz2REfC0Vsb6B0xA6lrmv_BuNx4MxGtVrO5qYQDAJZ9By366t_xsrOb2qqwduNYl9sTd5pyVxVqrJwPOHMWp2cGWWIav3iR90e6_d1qWJrxFCLUB_IYNcqQqP05iZ14eDv75Y4dov_Ij8W0J_BHagvwY7a11FzxBugcjM29DhTeqQGbY-Kn4aWQOEmyDT7OWv3CaZ9jxY9rMISeGF8MU3wFM8PN4mBe45275S8GP1GbHGLXW8NXR28N9v_PoVbQKngpFWNj8QUpCJQKpQAotJI-pTI3Z1pHxFVkcqyzVKvSVTyLFCdMmJIo41zqWEUjJyCmq5eMczhDWmc4ESONSWJ0iEpRGmmkFQcYVENFA7eVEJ6rqOW6pLz4TF3v4IjHQJBaapIKmgW5WIyZlv40_ZOsWijW5EoUGai7BTKodOUuIbxzBkHLBzn8ZdoF2jXZaZvc1Ua2YzuES7ahFMZxNr9xi-wbEKdG4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8MmqgHPzGiqD148TAYa7euR4MSUCQmYOS2rN1rJJFB-Er87227QSBGE287vLZLf23fe-1774fQLSO-AC-mDhOedEzJbocnBBylpNb-tYBDbEvmt1mnE_b7_DVPVre5MABgg8-gYj7tW34yknNzVVat2dIl5sTd9in13Cxda_VowAJLcqr3sKGWYatXSZdXe-_1iiEKrxBCjQu_oYUsrcqPs9gqmMbhP3_tCB3kliS-z6A_RluQnqD9tfqCp0h1YahnbiDxRh7IFGtLFbeG-ijBxv3Uq_kLx2mCLUOmiR2yYngxiPEDwBg_jQbpDHftPX8m-BGb-BjdrVF9RfTWeOzVm05OrOBIj3szE0FIiSd5TUgQXHHBQipirbiVr63FIAxlEivpudIlvmQkUNop8hlTKhQ-CBGQM1RIRymcI6wSlXAQ2qgwfXKfU-qrQEmoJUwC4SVUXU50JPOq44b84jOy3ofLIw1NZKCJcmhK6G7VYpxV3PhDtmigWJPLUCih8hLMKN-T04i42hT0KOPBxS_NbtBus_fSjtqtzvMl2tMj0SzWr4wKs8kcrtCOXMwG08m1XXjf1W3U_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Communications+for+Image+Recovery+and+Classification+via+Deep+Joint+Source+and+Channel+Coding&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Lyu%2C+Zhonghao&rft.au=Zhu%2C+Guangxu&rft.au=Xu%2C+Jie&rft.au=Ai%2C+Bo&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=23&rft.issue=8&rft.spage=8388&rft.epage=8404&rft_id=info:doi/10.1109%2FTWC.2023.3349330&rft.externalDocID=10388062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon