Variable-Wise Stacked Temporal Autoencoder for Intelligent Fault Diagnosis of Industrial Systems

Fault diagnosis of dynamic multivariate systems is a challenging problem. In this article, a novel fault diagnosis scheme based on variable-wise stacked temporal autoencoder (VW-STAE) is proposed. First, a variable-wise strategy is proposed on the raw industrial data, which sorts the variables for a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 20; číslo 5; s. 7545 - 7555
Hlavní autoři: Liu, Lang, Zheng, Ying, Liang, Shaojun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fault diagnosis of dynamic multivariate systems is a challenging problem. In this article, a novel fault diagnosis scheme based on variable-wise stacked temporal autoencoder (VW-STAE) is proposed. First, a variable-wise strategy is proposed on the raw industrial data, which sorts the variables for a specific fault by its deviation factor and introduces fault label information during pretraining procedure. Then, temporal autoencoder (TAE) is designed to capture the temporal and spatial feature synchronously and model the complex dependencies of dynamic samples. The stacked TAE is built to enhance the ability of feature extraction by combining multiple TAEs. By inputting the sorted variables sequentially, the VW-STAE is trained as a binary classifier for a specific fault; thereby its input variables and the corresponding network parameters are ultimately selected according to the VW-STAE with the optimal diagnosis performance. Finally, a bank of VW-STAEs is adopted for all faults, which is followed by a fully connected layer to achieve comprehensive fault diagnosis result. The effectiveness of the proposed method is demonstrated in the sensorless drive diagnosis example. The results indicate that the proposed method outperforms other existing deep learning methods.
AbstractList Fault diagnosis of dynamic multivariate systems is a challenging problem. In this article, a novel fault diagnosis scheme based on variable-wise stacked temporal autoencoder (VW-STAE) is proposed. First, a variable-wise strategy is proposed on the raw industrial data, which sorts the variables for a specific fault by its deviation factor and introduces fault label information during pretraining procedure. Then, temporal autoencoder (TAE) is designed to capture the temporal and spatial feature synchronously and model the complex dependencies of dynamic samples. The stacked TAE is built to enhance the ability of feature extraction by combining multiple TAEs. By inputting the sorted variables sequentially, the VW-STAE is trained as a binary classifier for a specific fault; thereby its input variables and the corresponding network parameters are ultimately selected according to the VW-STAE with the optimal diagnosis performance. Finally, a bank of VW-STAEs is adopted for all faults, which is followed by a fully connected layer to achieve comprehensive fault diagnosis result. The effectiveness of the proposed method is demonstrated in the sensorless drive diagnosis example. The results indicate that the proposed method outperforms other existing deep learning methods.
Author Liang, Shaojun
Zheng, Ying
Liu, Lang
Author_xml – sequence: 1
  givenname: Lang
  orcidid: 0009-0009-9170-1606
  surname: Liu
  fullname: Liu, Lang
  email: d202180945@hust.edu.cn
  organization: Belt and Road Joint Laboratory on Measurement and Control Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Ying
  orcidid: 0000-0002-9626-3360
  surname: Zheng
  fullname: Zheng, Ying
  email: zyhidy@mail.hust.edu.cn
  organization: Belt and Road Joint Laboratory on Measurement and Control Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Shaojun
  orcidid: 0009-0007-2949-3274
  surname: Liang
  fullname: Liang, Shaojun
  email: sjliang@hust.edu.cn
  organization: Belt and Road Joint Laboratory on Measurement and Control Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kDFvGzEMRoXCBWIn3TN0END5HEq07qzRSJvGQIAMcdvxqtNRgdLzyZV0Q_59ZdhD0CETCfB7JPgWbDaGkRi7FrAUAvTNbrtdSpCrJaJCLcUHNhd6JSoABbPSKyUqlIAXbJHSCwA2gHrOfv800ZtuoOqXT8SfsrF_qOc72h9CNAPfTDnQaENPkbsQ-XbMNAz-mcbM78w0ZP7Vm-cxJJ94cGXcTymXjQN_ek2Z9umKfXRmSPTpXC_Zj7tvu9v76uHx-_Z281BZqWWumtoh9hJroRq0vXRSd8qKWqyhW60bauqOnBOGpNKqc9DVgLaxpjyBspB4yb6c9h5i-DtRyu1LmOJYTrYISkoALeqSqk8pG0NKkVxrfTbZhzFH44dWQHu02Rab7dFme7ZZQPgPPES_N_H1PeTzCfFE9Ca-Qq3XNf4Dfx-Byg
CODEN ITIICH
CitedBy_id crossref_primary_10_3390_s24248053
crossref_primary_10_1088_1742_6596_2935_1_012010
crossref_primary_10_1109_TII_2024_3507172
crossref_primary_10_1109_TIM_2025_3550600
crossref_primary_10_1109_TII_2025_3534407
Cites_doi 10.1109/TSMC.2022.3224747
10.1016/j.jprocont.2015.12.002
10.1109/TII.2021.3078414
10.1109/TIM.2020.3011734
10.1016/j.jsv.2016.05.027
10.1016/j.compchemeng.2004.09.026
10.1109/TCST.2016.2576018
10.7551/mitpress/7503.003.0024
10.1109/TII.2020.2967822
10.1109/TCST.2018.2803071
10.1109/TPAMI.2017.2766142
10.1016/j.jtice.2020.09.013
10.1109/TII.2019.2902274
10.1016/j.ces.2009.01.050
10.1016/j.knosys.2021.106796
10.1109/TGRS.2019.2908756
10.1109/TNNLS.2013.2272292
10.1109/JSYST.2017.2753851
10.1016/j.jprocont.2020.05.015
10.1109/TII.2018.2809730
10.1109/TASLP.2016.2539499
10.1109/TMECH.2017.2759301
10.1016/j.neucom.2017.02.029
10.1109/ETFA.2013.6648126
10.1016/j.compchemeng.2017.02.041
10.1016/j.engappai.2006.06.020
10.1109/TIE.2017.2777383
10.1109/TIFS.2015.2446438
10.1016/0098-1354(93)80018-I
10.1145/3065386
10.1016/j.knosys.2021.107350
10.1016/j.knosys.2017.09.041
10.1016/j.ymssp.2015.10.025
10.1109/TIE.2017.2682012
10.1109/LGRS.2021.3096526
10.1016/j.compchemeng.2018.04.009
10.1109/TII.2022.3179423
10.1109/TII.2017.2755099
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2024.3353921
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 7555
ExternalDocumentID 10_1109_TII_2024_3353921
10439986
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873102
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-76f33d2361573cd2f29b5c16180b487e76beff1ae2595bf0b603c7ca0393233d3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001175941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:21:05 EDT 2025
Sat Nov 29 04:17:11 EST 2025
Tue Nov 18 21:00:59 EST 2025
Wed Aug 27 02:02:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-76f33d2361573cd2f29b5c16180b487e76beff1ae2595bf0b603c7ca0393233d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-9170-1606
0000-0002-9626-3360
0009-0007-2949-3274
PQID 3052200916
PQPubID 85507
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TII_2024_3353921
ieee_primary_10439986
proquest_journals_3052200916
crossref_primary_10_1109_TII_2024_3353921
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Li (ref1) 2013; 34
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
Bator (ref34) 2015
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref29
  doi: 10.1109/TSMC.2022.3224747
– ident: ref27
  doi: 10.1016/j.jprocont.2015.12.002
– ident: ref3
  doi: 10.1109/TII.2021.3078414
– ident: ref16
  doi: 10.1109/TIM.2020.3011734
– ident: ref12
  doi: 10.1016/j.jsv.2016.05.027
– ident: ref33
  doi: 10.1016/j.compchemeng.2004.09.026
– ident: ref5
  doi: 10.1109/TCST.2016.2576018
– volume: 34
  start-page: 632
  issue: 2
  year: 2013
  ident: ref1
  article-title: Study review and prospect of intelligent fault diagnosis technique
  publication-title: Comput. Eng. Des.
– ident: ref26
  doi: 10.7551/mitpress/7503.003.0024
– ident: ref18
  doi: 10.1109/TII.2020.2967822
– year: 2015
  ident: ref34
  article-title: Dataset for sensorless drive diagnosis
  publication-title: UCI Mach. Learn. Repository
– ident: ref7
  doi: 10.1109/TCST.2018.2803071
– ident: ref39
  doi: 10.1109/TPAMI.2017.2766142
– ident: ref6
  doi: 10.1016/j.jtice.2020.09.013
– ident: ref17
  doi: 10.1109/TII.2019.2902274
– ident: ref4
  doi: 10.1016/j.ces.2009.01.050
– ident: ref14
  doi: 10.1016/j.knosys.2021.106796
– ident: ref19
  doi: 10.1109/TGRS.2019.2908756
– ident: ref8
  doi: 10.1109/TNNLS.2013.2272292
– ident: ref37
  doi: 10.1109/JSYST.2017.2753851
– ident: ref21
  doi: 10.1016/j.jprocont.2020.05.015
– ident: ref23
  doi: 10.1109/TII.2018.2809730
– ident: ref31
  doi: 10.1109/TASLP.2016.2539499
– ident: ref15
  doi: 10.1109/TMECH.2017.2759301
– ident: ref38
  doi: 10.1016/j.neucom.2017.02.029
– ident: ref35
  doi: 10.1109/ETFA.2013.6648126
– ident: ref13
  doi: 10.1016/j.compchemeng.2017.02.041
– ident: ref24
  doi: 10.1016/j.engappai.2006.06.020
– ident: ref36
  doi: 10.1109/TIE.2017.2777383
– ident: ref22
  doi: 10.1109/TIFS.2015.2446438
– ident: ref28
  doi: 10.1016/0098-1354(93)80018-I
– ident: ref32
  doi: 10.1145/3065386
– ident: ref25
  doi: 10.1016/j.knosys.2021.107350
– ident: ref10
  doi: 10.1016/j.knosys.2017.09.041
– ident: ref40
  doi: 10.1016/j.ymssp.2015.10.025
– ident: ref9
  doi: 10.1109/TIE.2017.2682012
– ident: ref20
  doi: 10.1109/LGRS.2021.3096526
– ident: ref11
  doi: 10.1016/j.compchemeng.2018.04.009
– ident: ref30
  doi: 10.1109/TII.2022.3179423
– ident: ref2
  doi: 10.1109/TII.2017.2755099
SSID ssj0037039
Score 2.436963
Snippet Fault diagnosis of dynamic multivariate systems is a challenging problem. In this article, a novel fault diagnosis scheme based on variable-wise stacked...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7545
SubjectTerms Data models
Decoding
Deep learning
Fault diagnosis
Feature extraction
Machine learning
Training
variable selection
variable-wise stacked temporal autoencoder (VW-STAE)
Variables
Title Variable-Wise Stacked Temporal Autoencoder for Intelligent Fault Diagnosis of Industrial Systems
URI https://ieeexplore.ieee.org/document/10439986
https://www.proquest.com/docview/3052200916
Volume 20
WOSCitedRecordID wos001175941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCBzyIKBXlgYUjr2Ekcjwio6FIxFOgWYseWKlUNahJ-P2cnKUUIJLYMvijy-c73cnfvELpmKlCUK4AlJgOAIrnxbPujRwImhdIk0CJ1wyb4ZBLPZuKpaVZ3vTBaa1d8pgf20eXys1xV9lcZWLiNnuNoG21zzutmrdbtMji6wpGjhr7HKGFtTpKI4XQ8BiRIgwFjIcQD_rc7yA1V-eGJ3fUyOvjnhx2i_SaOxLe14o_Qll4eo70NdsET9PYCONh2Rnmv80JjCCvBYjM8rcmoQLYqc0tjmekVhtAVj9fsnCUepdWixPd1Hd68wLnBX0M-cENz3kXPo4fp3aPXDFTwFBW09HhkGMss3UrImcqooUKGylLmEwnARfNIamP8VAMmCqUhMiJMcZXa_l0KkuwUdZb5Up8hTJQOSaCYigFvxToTAQ1ANCIiZjILWQ8N2y1OVMM2bodeLBKHOohIQCmJVUrSKKWHbtYS7zXTxh9ru1YJG-vq_e-hfqvGpLHFIgGPRm0OyI_OfxG7QLv27XUdYx91ylWlL9GO-ijnxerKHbNP9OXO-g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIAEHnkMMBuTAhUO3NEkfOSJg2sSYOAzYraxpKk2aVrR1_H6ctBtDCCRuPcRqFceOv9r-DHDFlVAsUAhL0gQBShykjml_dKjgsVSaCi2HdthE0OuFg4F8KpvVbS-M1toWn-mGebS5_CRTc_OrDC3cRM-hvw4bnhDMLdq1Fo6X4-GVlh7Vcx3OKF9kJals9jsdxIJMNDj3MCJwv91CdqzKD19sL5jW3j8_bR92y0iS3BSqP4A1PTmEnRV-wSN4e0EkbHqjnNfRTBMMLNFmE9Iv6KhQdp5nhsgy0VOCwSvpLPk5c9Iazsc5uSsq8UYzkqXka8wHKYnOq_Dcuu_ftp1ypIKjmGS5E_gp54khXPECrhKWMhl7ypDm0xihiw78WKepO9SIirw4pbFPuQrU0HTwMpTkx1CZZBN9AoQq7VGhuAoRcYU6kYIJFPWpDHmceLwGzcUWR6rkGzdjL8aRxR1URqiUyCglKpVSg-ulxHvBtfHH2qpRwsq6Yv9rUF-oMSqtcRahT2MmC-T6p7-IXcJWu__Yjbqd3sMZbJs3FVWNdajk07k-h031kY9m0wt75D4B41XSQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable-Wise+Stacked+Temporal+Autoencoder+for+Intelligent+Fault+Diagnosis+of+Industrial+Systems&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Lang%2C+Liu&rft.au=Zheng%2C+Ying&rft.au=Liang%2C+Shaojun&rft.date=2024-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=20&rft.issue=5&rft.spage=7545&rft_id=info:doi/10.1109%2FTII.2024.3353921&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon