Variable-Wise Stacked Temporal Autoencoder for Intelligent Fault Diagnosis of Industrial Systems
Fault diagnosis of dynamic multivariate systems is a challenging problem. In this article, a novel fault diagnosis scheme based on variable-wise stacked temporal autoencoder (VW-STAE) is proposed. First, a variable-wise strategy is proposed on the raw industrial data, which sorts the variables for a...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial informatics Ročník 20; číslo 5; s. 7545 - 7555 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fault diagnosis of dynamic multivariate systems is a challenging problem. In this article, a novel fault diagnosis scheme based on variable-wise stacked temporal autoencoder (VW-STAE) is proposed. First, a variable-wise strategy is proposed on the raw industrial data, which sorts the variables for a specific fault by its deviation factor and introduces fault label information during pretraining procedure. Then, temporal autoencoder (TAE) is designed to capture the temporal and spatial feature synchronously and model the complex dependencies of dynamic samples. The stacked TAE is built to enhance the ability of feature extraction by combining multiple TAEs. By inputting the sorted variables sequentially, the VW-STAE is trained as a binary classifier for a specific fault; thereby its input variables and the corresponding network parameters are ultimately selected according to the VW-STAE with the optimal diagnosis performance. Finally, a bank of VW-STAEs is adopted for all faults, which is followed by a fully connected layer to achieve comprehensive fault diagnosis result. The effectiveness of the proposed method is demonstrated in the sensorless drive diagnosis example. The results indicate that the proposed method outperforms other existing deep learning methods. |
|---|---|
| AbstractList | Fault diagnosis of dynamic multivariate systems is a challenging problem. In this article, a novel fault diagnosis scheme based on variable-wise stacked temporal autoencoder (VW-STAE) is proposed. First, a variable-wise strategy is proposed on the raw industrial data, which sorts the variables for a specific fault by its deviation factor and introduces fault label information during pretraining procedure. Then, temporal autoencoder (TAE) is designed to capture the temporal and spatial feature synchronously and model the complex dependencies of dynamic samples. The stacked TAE is built to enhance the ability of feature extraction by combining multiple TAEs. By inputting the sorted variables sequentially, the VW-STAE is trained as a binary classifier for a specific fault; thereby its input variables and the corresponding network parameters are ultimately selected according to the VW-STAE with the optimal diagnosis performance. Finally, a bank of VW-STAEs is adopted for all faults, which is followed by a fully connected layer to achieve comprehensive fault diagnosis result. The effectiveness of the proposed method is demonstrated in the sensorless drive diagnosis example. The results indicate that the proposed method outperforms other existing deep learning methods. |
| Author | Liang, Shaojun Zheng, Ying Liu, Lang |
| Author_xml | – sequence: 1 givenname: Lang orcidid: 0009-0009-9170-1606 surname: Liu fullname: Liu, Lang email: d202180945@hust.edu.cn organization: Belt and Road Joint Laboratory on Measurement and Control Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Ying orcidid: 0000-0002-9626-3360 surname: Zheng fullname: Zheng, Ying email: zyhidy@mail.hust.edu.cn organization: Belt and Road Joint Laboratory on Measurement and Control Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Shaojun orcidid: 0009-0007-2949-3274 surname: Liang fullname: Liang, Shaojun email: sjliang@hust.edu.cn organization: Belt and Road Joint Laboratory on Measurement and Control Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| BookMark | eNp9kDFvGzEMRoXCBWIn3TN0END5HEq07qzRSJvGQIAMcdvxqtNRgdLzyZV0Q_59ZdhD0CETCfB7JPgWbDaGkRi7FrAUAvTNbrtdSpCrJaJCLcUHNhd6JSoABbPSKyUqlIAXbJHSCwA2gHrOfv800ZtuoOqXT8SfsrF_qOc72h9CNAPfTDnQaENPkbsQ-XbMNAz-mcbM78w0ZP7Vm-cxJJ94cGXcTymXjQN_ek2Z9umKfXRmSPTpXC_Zj7tvu9v76uHx-_Z281BZqWWumtoh9hJroRq0vXRSd8qKWqyhW60bauqOnBOGpNKqc9DVgLaxpjyBspB4yb6c9h5i-DtRyu1LmOJYTrYISkoALeqSqk8pG0NKkVxrfTbZhzFH44dWQHu02Rab7dFme7ZZQPgPPES_N_H1PeTzCfFE9Ca-Qq3XNf4Dfx-Byg |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_3390_s24248053 crossref_primary_10_1088_1742_6596_2935_1_012010 crossref_primary_10_1109_TII_2024_3507172 crossref_primary_10_1109_TIM_2025_3550600 crossref_primary_10_1109_TII_2025_3534407 |
| Cites_doi | 10.1109/TSMC.2022.3224747 10.1016/j.jprocont.2015.12.002 10.1109/TII.2021.3078414 10.1109/TIM.2020.3011734 10.1016/j.jsv.2016.05.027 10.1016/j.compchemeng.2004.09.026 10.1109/TCST.2016.2576018 10.7551/mitpress/7503.003.0024 10.1109/TII.2020.2967822 10.1109/TCST.2018.2803071 10.1109/TPAMI.2017.2766142 10.1016/j.jtice.2020.09.013 10.1109/TII.2019.2902274 10.1016/j.ces.2009.01.050 10.1016/j.knosys.2021.106796 10.1109/TGRS.2019.2908756 10.1109/TNNLS.2013.2272292 10.1109/JSYST.2017.2753851 10.1016/j.jprocont.2020.05.015 10.1109/TII.2018.2809730 10.1109/TASLP.2016.2539499 10.1109/TMECH.2017.2759301 10.1016/j.neucom.2017.02.029 10.1109/ETFA.2013.6648126 10.1016/j.compchemeng.2017.02.041 10.1016/j.engappai.2006.06.020 10.1109/TIE.2017.2777383 10.1109/TIFS.2015.2446438 10.1016/0098-1354(93)80018-I 10.1145/3065386 10.1016/j.knosys.2021.107350 10.1016/j.knosys.2017.09.041 10.1016/j.ymssp.2015.10.025 10.1109/TIE.2017.2682012 10.1109/LGRS.2021.3096526 10.1016/j.compchemeng.2018.04.009 10.1109/TII.2022.3179423 10.1109/TII.2017.2755099 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2024.3353921 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 7555 |
| ExternalDocumentID | 10_1109_TII_2024_3353921 10439986 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873102 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-76f33d2361573cd2f29b5c16180b487e76beff1ae2595bf0b603c7ca0393233d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001175941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:21:05 EDT 2025 Sat Nov 29 04:17:11 EST 2025 Tue Nov 18 21:00:59 EST 2025 Wed Aug 27 02:02:25 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-76f33d2361573cd2f29b5c16180b487e76beff1ae2595bf0b603c7ca0393233d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0009-9170-1606 0000-0002-9626-3360 0009-0007-2949-3274 |
| PQID | 3052200916 |
| PQPubID | 85507 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TII_2024_3353921 ieee_primary_10439986 proquest_journals_3052200916 crossref_primary_10_1109_TII_2024_3353921 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 Li (ref1) 2013; 34 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 Bator (ref34) 2015 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref29 doi: 10.1109/TSMC.2022.3224747 – ident: ref27 doi: 10.1016/j.jprocont.2015.12.002 – ident: ref3 doi: 10.1109/TII.2021.3078414 – ident: ref16 doi: 10.1109/TIM.2020.3011734 – ident: ref12 doi: 10.1016/j.jsv.2016.05.027 – ident: ref33 doi: 10.1016/j.compchemeng.2004.09.026 – ident: ref5 doi: 10.1109/TCST.2016.2576018 – volume: 34 start-page: 632 issue: 2 year: 2013 ident: ref1 article-title: Study review and prospect of intelligent fault diagnosis technique publication-title: Comput. Eng. Des. – ident: ref26 doi: 10.7551/mitpress/7503.003.0024 – ident: ref18 doi: 10.1109/TII.2020.2967822 – year: 2015 ident: ref34 article-title: Dataset for sensorless drive diagnosis publication-title: UCI Mach. Learn. Repository – ident: ref7 doi: 10.1109/TCST.2018.2803071 – ident: ref39 doi: 10.1109/TPAMI.2017.2766142 – ident: ref6 doi: 10.1016/j.jtice.2020.09.013 – ident: ref17 doi: 10.1109/TII.2019.2902274 – ident: ref4 doi: 10.1016/j.ces.2009.01.050 – ident: ref14 doi: 10.1016/j.knosys.2021.106796 – ident: ref19 doi: 10.1109/TGRS.2019.2908756 – ident: ref8 doi: 10.1109/TNNLS.2013.2272292 – ident: ref37 doi: 10.1109/JSYST.2017.2753851 – ident: ref21 doi: 10.1016/j.jprocont.2020.05.015 – ident: ref23 doi: 10.1109/TII.2018.2809730 – ident: ref31 doi: 10.1109/TASLP.2016.2539499 – ident: ref15 doi: 10.1109/TMECH.2017.2759301 – ident: ref38 doi: 10.1016/j.neucom.2017.02.029 – ident: ref35 doi: 10.1109/ETFA.2013.6648126 – ident: ref13 doi: 10.1016/j.compchemeng.2017.02.041 – ident: ref24 doi: 10.1016/j.engappai.2006.06.020 – ident: ref36 doi: 10.1109/TIE.2017.2777383 – ident: ref22 doi: 10.1109/TIFS.2015.2446438 – ident: ref28 doi: 10.1016/0098-1354(93)80018-I – ident: ref32 doi: 10.1145/3065386 – ident: ref25 doi: 10.1016/j.knosys.2021.107350 – ident: ref10 doi: 10.1016/j.knosys.2017.09.041 – ident: ref40 doi: 10.1016/j.ymssp.2015.10.025 – ident: ref9 doi: 10.1109/TIE.2017.2682012 – ident: ref20 doi: 10.1109/LGRS.2021.3096526 – ident: ref11 doi: 10.1016/j.compchemeng.2018.04.009 – ident: ref30 doi: 10.1109/TII.2022.3179423 – ident: ref2 doi: 10.1109/TII.2017.2755099 |
| SSID | ssj0037039 |
| Score | 2.436963 |
| Snippet | Fault diagnosis of dynamic multivariate systems is a challenging problem. In this article, a novel fault diagnosis scheme based on variable-wise stacked... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7545 |
| SubjectTerms | Data models Decoding Deep learning Fault diagnosis Feature extraction Machine learning Training variable selection variable-wise stacked temporal autoencoder (VW-STAE) Variables |
| Title | Variable-Wise Stacked Temporal Autoencoder for Intelligent Fault Diagnosis of Industrial Systems |
| URI | https://ieeexplore.ieee.org/document/10439986 https://www.proquest.com/docview/3052200916 |
| Volume | 20 |
| WOSCitedRecordID | wos001175941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCBzyIKBXlgYUjr2Ekcjwio6FIxFOgWYseWKlUNahJ-P2cnKUUIJLYMvijy-c73cnfvELpmKlCUK4AlJgOAIrnxbPujRwImhdIk0CJ1wyb4ZBLPZuKpaVZ3vTBaa1d8pgf20eXys1xV9lcZWLiNnuNoG21zzutmrdbtMji6wpGjhr7HKGFtTpKI4XQ8BiRIgwFjIcQD_rc7yA1V-eGJ3fUyOvjnhx2i_SaOxLe14o_Qll4eo70NdsET9PYCONh2Rnmv80JjCCvBYjM8rcmoQLYqc0tjmekVhtAVj9fsnCUepdWixPd1Hd68wLnBX0M-cENz3kXPo4fp3aPXDFTwFBW09HhkGMss3UrImcqooUKGylLmEwnARfNIamP8VAMmCqUhMiJMcZXa_l0KkuwUdZb5Up8hTJQOSaCYigFvxToTAQ1ANCIiZjILWQ8N2y1OVMM2bodeLBKHOohIQCmJVUrSKKWHbtYS7zXTxh9ru1YJG-vq_e-hfqvGpLHFIgGPRm0OyI_OfxG7QLv27XUdYx91ylWlL9GO-ijnxerKHbNP9OXO-g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIAEHnkMMBuTAhUO3NEkfOSJg2sSYOAzYraxpKk2aVrR1_H6ctBtDCCRuPcRqFceOv9r-DHDFlVAsUAhL0gQBShykjml_dKjgsVSaCi2HdthE0OuFg4F8KpvVbS-M1toWn-mGebS5_CRTc_OrDC3cRM-hvw4bnhDMLdq1Fo6X4-GVlh7Vcx3OKF9kJals9jsdxIJMNDj3MCJwv91CdqzKD19sL5jW3j8_bR92y0iS3BSqP4A1PTmEnRV-wSN4e0EkbHqjnNfRTBMMLNFmE9Iv6KhQdp5nhsgy0VOCwSvpLPk5c9Iazsc5uSsq8UYzkqXka8wHKYnOq_Dcuu_ftp1ypIKjmGS5E_gp54khXPECrhKWMhl7ypDm0xihiw78WKepO9SIirw4pbFPuQrU0HTwMpTkx1CZZBN9AoQq7VGhuAoRcYU6kYIJFPWpDHmceLwGzcUWR6rkGzdjL8aRxR1URqiUyCglKpVSg-ulxHvBtfHH2qpRwsq6Yv9rUF-oMSqtcRahT2MmC-T6p7-IXcJWu__Yjbqd3sMZbJs3FVWNdajk07k-h031kY9m0wt75D4B41XSQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable-Wise+Stacked+Temporal+Autoencoder+for+Intelligent+Fault+Diagnosis+of+Industrial+Systems&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Lang%2C+Liu&rft.au=Zheng%2C+Ying&rft.au=Liang%2C+Shaojun&rft.date=2024-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=20&rft.issue=5&rft.spage=7545&rft_id=info:doi/10.1109%2FTII.2024.3353921&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |