The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation

We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, train...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on robotics Ročník 39; číslo 6; s. 4581 - 4599
Hlavní autoři: Thomas, Hugues, Zhang, Jian, Barfoot, Timothy D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1552-3098, 1941-0468
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic scenes. We present an autolabeling process that creates SOGMs from noisy real navigation data. We use a 3-D-2-D feedforward architecture, trained to predict the future time steps of SOGMs, given 3-D Lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for real robots. The network is composed of a 3-D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2-D front-end that predicts the future information embedded in the SOGM representation, potentially capturing the complexities and uncertainties of real-world multiagent interactions. We also design a navigation system that uses these predicted SOGMs within planning, after they have been transformed into spatiotemporal risk maps. We verify our navigation system's abilities in simulation, validate it on a real robot, study SOGM predictions on real data in various circumstances, and provide a novel indoor 3-D lidar dataset, collected during our experiments, which includes our automated annotations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2023.3304239