Qualitative System Identification from Imperfect Data
Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best whe...
Uložené v:
| Vydané v: | The Journal of artificial intelligence research Ročník 32; s. 825 - 877 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
San Francisco
AI Access Foundation
01.01.2008
|
| Predmet: | |
| ISSN: | 1076-9757, 1076-9757, 1943-5037 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best when the structure of the model (i.e., the form of the equations) is known; and the primary concern is one of estimating the values of the parameters in the model. For complex biological systems, the model-structure is rarely known and the modeler has to deal with both model-identification and parameter-estimation. In this paper we are concerned with providing automated assistance to the first of these problems. Specifically, we examine the identification by machine of the structural relationships between experimentally observed variables. These relationship will be expressed in the form of qualitative abstractions of a quantitative model. Such qualitative models may not only provide clues to the precise quantitative model, but also assist in understanding the essence of that model. Our position in this paper is that background knowledge incorporating system modelling principles can be used to constrain effectively the set of good qualitative models. Utilising the model-identification framework provided by Inductive Logic Programming (ILP) we present empirical support for this position using a series of increasingly complex artificial datasets. The results are obtained with qualitative and quantitative data subject to varying amounts of noise and different degrees of sparsity. The results also point to the presence of a set of qualitative states, which we term kernel subsets, that may be necessary for a qualitative model-learner to learn correct models. We demonstrate scalability of the method to biological system modelling by identification of the glycolysis metabolic pathway from data. |
|---|---|
| AbstractList | Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best when the structure of the model (i.e., the form of the equations) is known; and the primary concern is one of estimating the values of the parameters in the model. For complex biological systems, the model-structure is rarely known and the modeler has to deal with both model-identification and parameter-estimation. In this paper we are concerned with providing automated assistance to the first of these problems. Specifically, we examine the identification by machine of the structural relationships between experimentally observed variables. These relationship will be expressed in the form of qualitative abstractions of a quantitative model. Such qualitative models may not only provide clues to the precise quantitative model, but also assist in understanding the essence of that model. Our position in this paper is that background knowledge incorporating system modelling principles can be used to constrain effectively the set of good qualitative models. Utilising the model-identification framework provided by Inductive Logic Programming (ILP) we present empirical support for this position using a series of increasingly complex artificial datasets. The results are obtained with qualitative and quantitative data subject to varying amounts of noise and different degrees of sparsity. The results also point to the presence of a set of qualitative states, which we term kernel subsets, that may be necessary for a qualitative model-learner to learn correct models. We demonstrate scalability of the method to biological system modelling by identification of the glycolysis metabolic pathway from data. |
| Author | Coghill, G. M. Srinivasan, A. King, R. D. |
| Author_xml | – sequence: 1 givenname: G. M. surname: Coghill fullname: Coghill, G. M. – sequence: 2 givenname: A. surname: Srinivasan fullname: Srinivasan, A. – sequence: 3 givenname: R. D. surname: King fullname: King, R. D. |
| BookMark | eNptkE1LAzEQhoNUsK0e_AcLnjxsm2Q3X0epX4WCiHoO2WQCKe2mJqnQf-9WPYh4muHlmRnmmaBRH3tA6JLgGeGkma9NSDPaiPYEjQkWvFaCidGv_gxNcl5jTFRL5Rix573ZhGJK-IDq5ZALbKulg74EH-yQxr7yKQ7ZdgfJgy3VrSnmHJ16s8lw8VOn6O3-7nXxWK-eHpaLm1VtqaKlFgRLJrBjUjluOt9Q6RVXTrbKc2uNwtDilmLhcIeZAMmcsR1rXNdxIQCaKbr63rtL8X0Pueh13Kd-OKkpYy0hnHE5UNfflE0x5wRe71LYmnTQBOujFX20oo9WBnb-h7Vf38e-JBM2_0x8An7TZq4 |
| CitedBy_id | crossref_primary_10_1007_s00500_014_1467_6 crossref_primary_10_1017_S0269888909990348 crossref_primary_10_1016_j_jocs_2014_06_002 crossref_primary_10_1016_j_asoc_2014_11_008 crossref_primary_10_1155_2023_3267820 crossref_primary_10_1016_j_aei_2009_03_003 crossref_primary_10_1016_j_artint_2011_02_004 crossref_primary_10_1007_s11047_010_9212_2 |
| ContentType | Journal Article |
| Copyright | 2008. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about |
| Copyright_xml | – notice: 2008. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1613/jair.2374 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1076-9757 1943-5037 |
| EndPage | 877 |
| ExternalDocumentID | 10_1613_jair_2374 |
| GroupedDBID | .DC 29J 2WC 5GY 5VS AAKMM AAKPC AALFJ AAYFX AAYXX ACGFO ACM ADBBV ADBSK AEFXT AEJOY AENEX AFFHD AFKRA AFWXC AKRVB ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ C1A CCPQU CITATION E3Z EBS EJD F5P FRJ FRP GROUPED_DOAJ GUFHI HCIFZ K7- KQ8 LHSKQ LPJ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB RNS TR2 XSB 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c292t-7108570d589d6abf328f969d849f6cca90e404207d0b057e85dacb53dbb677ee3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258707900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1076-9757 |
| IngestDate | Sun Nov 09 07:33:05 EST 2025 Tue Nov 18 21:32:41 EST 2025 Sat Nov 29 05:27:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-7108570d589d6abf328f969d849f6cca90e404207d0b057e85dacb53dbb677ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2554116568?pq-origsite=%requestingapplication% |
| PQID | 2554116568 |
| PQPubID | 5160723 |
| PageCount | 53 |
| ParticipantIDs | proquest_journals_2554116568 crossref_primary_10_1613_jair_2374 crossref_citationtrail_10_1613_jair_2374 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-01-01 |
| PublicationDateYYYYMMDD | 2008-01-01 |
| PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | San Francisco |
| PublicationPlace_xml | – name: San Francisco |
| PublicationTitle | The Journal of artificial intelligence research |
| PublicationYear | 2008 |
| Publisher | AI Access Foundation |
| Publisher_xml | – name: AI Access Foundation |
| SSID | ssj0019428 |
| Score | 1.9386914 |
| Snippet | Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models.... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 825 |
| SubjectTerms | Artificial intelligence Biological models (mathematics) Complex systems Differential equations Glycolysis Identification Logic programming Parameter estimation Parameter identification Physical sciences Qualitative analysis System identification |
| Title | Qualitative System Identification from Imperfect Data |
| URI | https://www.proquest.com/docview/2554116568 |
| Volume | 32 |
| WOSCitedRecordID | wos000258707900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: DOA dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: K7- dateStart: 19930101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: BENPR dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: PIMPY dateStart: 19930101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB609eDFumK1lkE8eImmk8x2EpcWi1iCKNRTyGxQkbam0d_vTDKpFMSL12QO4cu8_b3vAXCWaSvNPSJcVVcGMbZ60BqlKMCuVBgTEUlhymUTdDRi4zFPfMJt4dsqa51YKmo1ky5Hfmld37ikimFX84_AbY1y1VW_QmMdNHsI9dw9f6DBsorAY1SNwlEScIqpZxayFuzyLZvkFyii8ao9WlXHpY0ZtP77ddtgy3uX8Lq6DjtgTU93Qave3AC9IO8BXFFnlKTfsCIth9XIrvE5POjmTuDQOtW5a_iAd1mR7YOXQf_59j7wCxQCiTgqXJ-l469XmHFFMmEixAwnXLGYG2J_HQ91bIU2pCoU1m_TDKtMChwpIQilWkcHoDGdTfUhgMTwSNGQCGTjQcYIl5mi1nUzRlDMjWqD8xrGVHp2cbfk4j11UYZFPHWIpw7xNjhdHp1XlBq_HerUQKdeqhbpD8pHf78-BptVX4dLlXRAo8g_9QnYkF_FZJF3QfOmP0qeumX83S2vjH2WDB-T129nOsoA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8NAFH7UKujFumK16iAKXmJjllkOImItLa3FQ4XeYiYzAxVpaxoV_5S_0ZkslYJ468FzhpDke3n7-x7AaSj133yJuanqRpbnaz2ojZJr-aZU6GHuRlylyyZIr0cHA_ZQgq9iFsa0VRY6MVXUYhyZHHldu75eShVDryevltkaZaqrxQqNTCw68vNDh2zTq3ZD43vmOM27_m3LyrcKWJHDnMQ0HxpSd-FTJnDIletQxTAT1GMK6_dhtvS0JNtE2Fw7M5L6Ioy47wrOMSFSuvq-S7DsuZQYrv4OsWZVC-Y52egdwRYjPsmZjLTFrD-Hw_jCcYk3b__m1X9q05qV__Y1NmA9957RTSbum1CSoy2oFJspUK6otsHPqEFSUnOUkbKjbCRZ5TlKZOZqUFsHDbFpaEGNMAl34HEhD78L5dF4JPcAYcVcQWzMHR3vUopZFAqiXVOlOPGZElU4L2ALopw93SzxeAlMFKURDgzCgUG4Ciezo5OMMuS3Q7UC2CDXGtPgB9X9vy8fw2qrf98Nuu1e5wDWsh4WkxaqQTmJ3-QhrETvyXAaH6UCiuBp0TLwDa4oIr0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qualitative+System+Identification+from+Imperfect+Data&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Coghill%2C+G+M&rft.au=Srinivasan%2C+A&rft.au=King%2C+R+D&rft.date=2008-01-01&rft.pub=AI+Access+Foundation&rft.issn=1076-9757&rft.eissn=1943-5037&rft.volume=32&rft.spage=825&rft_id=info:doi/10.1613%2Fjair.2374 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon |