Qualitative System Identification from Imperfect Data

Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best whe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of artificial intelligence research Ročník 32; s. 825 - 877
Hlavní autori: Coghill, G. M., Srinivasan, A., King, R. D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: San Francisco AI Access Foundation 01.01.2008
Predmet:
ISSN:1076-9757, 1076-9757, 1943-5037
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best when the structure of the model (i.e., the form of the equations) is known; and the primary concern is one of estimating the values of the parameters in the model. For complex biological systems, the model-structure is rarely known and the modeler has to deal with both model-identification and parameter-estimation. In this paper we are concerned with providing automated assistance to the first of these problems. Specifically, we examine the identification by machine of the structural relationships between experimentally observed variables. These relationship will be expressed in the form of qualitative abstractions of a quantitative model. Such qualitative models may not only provide clues to the precise quantitative model, but also assist in understanding the essence of that model. Our position in this paper is that background knowledge incorporating system modelling principles can be used to constrain effectively the set of good qualitative models. Utilising the model-identification framework provided by Inductive Logic Programming (ILP) we present empirical support for this position using a series of increasingly complex artificial datasets. The results are obtained with qualitative and quantitative data subject to varying amounts of noise and different degrees of sparsity. The results also point to the presence of a set of qualitative states, which we term kernel subsets, that may be necessary for a qualitative model-learner to learn correct models. We demonstrate scalability of the method to biological system modelling by identification of the glycolysis metabolic pathway from data.
AbstractList Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best when the structure of the model (i.e., the form of the equations) is known; and the primary concern is one of estimating the values of the parameters in the model. For complex biological systems, the model-structure is rarely known and the modeler has to deal with both model-identification and parameter-estimation. In this paper we are concerned with providing automated assistance to the first of these problems. Specifically, we examine the identification by machine of the structural relationships between experimentally observed variables. These relationship will be expressed in the form of qualitative abstractions of a quantitative model. Such qualitative models may not only provide clues to the precise quantitative model, but also assist in understanding the essence of that model. Our position in this paper is that background knowledge incorporating system modelling principles can be used to constrain effectively the set of good qualitative models. Utilising the model-identification framework provided by Inductive Logic Programming (ILP) we present empirical support for this position using a series of increasingly complex artificial datasets. The results are obtained with qualitative and quantitative data subject to varying amounts of noise and different degrees of sparsity. The results also point to the presence of a set of qualitative states, which we term kernel subsets, that may be necessary for a qualitative model-learner to learn correct models. We demonstrate scalability of the method to biological system modelling by identification of the glycolysis metabolic pathway from data.
Author Coghill, G. M.
Srinivasan, A.
King, R. D.
Author_xml – sequence: 1
  givenname: G. M.
  surname: Coghill
  fullname: Coghill, G. M.
– sequence: 2
  givenname: A.
  surname: Srinivasan
  fullname: Srinivasan, A.
– sequence: 3
  givenname: R. D.
  surname: King
  fullname: King, R. D.
BookMark eNptkE1LAzEQhoNUsK0e_AcLnjxsm2Q3X0epX4WCiHoO2WQCKe2mJqnQf-9WPYh4muHlmRnmmaBRH3tA6JLgGeGkma9NSDPaiPYEjQkWvFaCidGv_gxNcl5jTFRL5Rix573ZhGJK-IDq5ZALbKulg74EH-yQxr7yKQ7ZdgfJgy3VrSnmHJ16s8lw8VOn6O3-7nXxWK-eHpaLm1VtqaKlFgRLJrBjUjluOt9Q6RVXTrbKc2uNwtDilmLhcIeZAMmcsR1rXNdxIQCaKbr63rtL8X0Pueh13Kd-OKkpYy0hnHE5UNfflE0x5wRe71LYmnTQBOujFX20oo9WBnb-h7Vf38e-JBM2_0x8An7TZq4
CitedBy_id crossref_primary_10_1007_s00500_014_1467_6
crossref_primary_10_1017_S0269888909990348
crossref_primary_10_1016_j_jocs_2014_06_002
crossref_primary_10_1016_j_asoc_2014_11_008
crossref_primary_10_1155_2023_3267820
crossref_primary_10_1016_j_aei_2009_03_003
crossref_primary_10_1016_j_artint_2011_02_004
crossref_primary_10_1007_s11047_010_9212_2
ContentType Journal Article
Copyright 2008. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
Copyright_xml – notice: 2008. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1613/jair.2374
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1076-9757
1943-5037
EndPage 877
ExternalDocumentID 10_1613_jair_2374
GroupedDBID .DC
29J
2WC
5GY
5VS
AAKMM
AAKPC
AALFJ
AAYFX
AAYXX
ACGFO
ACM
ADBBV
ADBSK
AEFXT
AEJOY
AENEX
AFFHD
AFKRA
AFWXC
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
C1A
CCPQU
CITATION
E3Z
EBS
EJD
F5P
FRJ
FRP
GROUPED_DOAJ
GUFHI
HCIFZ
K7-
KQ8
LHSKQ
LPJ
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
RNS
TR2
XSB
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c292t-7108570d589d6abf328f969d849f6cca90e404207d0b057e85dacb53dbb677ee3
IEDL.DBID K7-
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258707900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1076-9757
IngestDate Sun Nov 09 07:33:05 EST 2025
Tue Nov 18 21:32:41 EST 2025
Sat Nov 29 05:27:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-7108570d589d6abf328f969d849f6cca90e404207d0b057e85dacb53dbb677ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2554116568?pq-origsite=%requestingapplication%
PQID 2554116568
PQPubID 5160723
PageCount 53
ParticipantIDs proquest_journals_2554116568
crossref_primary_10_1613_jair_2374
crossref_citationtrail_10_1613_jair_2374
PublicationCentury 2000
PublicationDate 2008-01-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-01
  day: 01
PublicationDecade 2000
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
PublicationTitle The Journal of artificial intelligence research
PublicationYear 2008
Publisher AI Access Foundation
Publisher_xml – name: AI Access Foundation
SSID ssj0019428
Score 1.9386914
Snippet Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 825
SubjectTerms Artificial intelligence
Biological models (mathematics)
Complex systems
Differential equations
Glycolysis
Identification
Logic programming
Parameter estimation
Parameter identification
Physical sciences
Qualitative analysis
System identification
Title Qualitative System Identification from Imperfect Data
URI https://www.proquest.com/docview/2554116568
Volume 32
WOSCitedRecordID wos000258707900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: DOA
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: K7-
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: BENPR
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: PIMPY
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB609eDFumK1lkE8eImmk8x2EpcWi1iCKNRTyGxQkbam0d_vTDKpFMSL12QO4cu8_b3vAXCWaSvNPSJcVVcGMbZ60BqlKMCuVBgTEUlhymUTdDRi4zFPfMJt4dsqa51YKmo1ky5Hfmld37ikimFX84_AbY1y1VW_QmMdNHsI9dw9f6DBsorAY1SNwlEScIqpZxayFuzyLZvkFyii8ao9WlXHpY0ZtP77ddtgy3uX8Lq6DjtgTU93Qave3AC9IO8BXFFnlKTfsCIth9XIrvE5POjmTuDQOtW5a_iAd1mR7YOXQf_59j7wCxQCiTgqXJ-l469XmHFFMmEixAwnXLGYG2J_HQ91bIU2pCoU1m_TDKtMChwpIQilWkcHoDGdTfUhgMTwSNGQCGTjQcYIl5mi1nUzRlDMjWqD8xrGVHp2cbfk4j11UYZFPHWIpw7xNjhdHp1XlBq_HerUQKdeqhbpD8pHf78-BptVX4dLlXRAo8g_9QnYkF_FZJF3QfOmP0qeumX83S2vjH2WDB-T129nOsoA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8NAFH7UKujFumK16iAKXmJjllkOImItLa3FQ4XeYiYzAxVpaxoV_5S_0ZkslYJ468FzhpDke3n7-x7AaSj133yJuanqRpbnaz2ojZJr-aZU6GHuRlylyyZIr0cHA_ZQgq9iFsa0VRY6MVXUYhyZHHldu75eShVDryevltkaZaqrxQqNTCw68vNDh2zTq3ZD43vmOM27_m3LyrcKWJHDnMQ0HxpSd-FTJnDIletQxTAT1GMK6_dhtvS0JNtE2Fw7M5L6Ioy47wrOMSFSuvq-S7DsuZQYrv4OsWZVC-Y52egdwRYjPsmZjLTFrD-Hw_jCcYk3b__m1X9q05qV__Y1NmA9957RTSbum1CSoy2oFJspUK6otsHPqEFSUnOUkbKjbCRZ5TlKZOZqUFsHDbFpaEGNMAl34HEhD78L5dF4JPcAYcVcQWzMHR3vUopZFAqiXVOlOPGZElU4L2ALopw93SzxeAlMFKURDgzCgUG4Ciezo5OMMuS3Q7UC2CDXGtPgB9X9vy8fw2qrf98Nuu1e5wDWsh4WkxaqQTmJ3-QhrETvyXAaH6UCiuBp0TLwDa4oIr0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qualitative+System+Identification+from+Imperfect+Data&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Coghill%2C+G+M&rft.au=Srinivasan%2C+A&rft.au=King%2C+R+D&rft.date=2008-01-01&rft.pub=AI+Access+Foundation&rft.issn=1076-9757&rft.eissn=1943-5037&rft.volume=32&rft.spage=825&rft_id=info:doi/10.1613%2Fjair.2374
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon