Detection of False Data Injection Attacks in Cyber-Physical Power Systems: An Adaptive Adversarial Dual Autoencoder With Graph Representation Learning Approach

False data injection attacks (FDIAs) are an important network attack threatening the security of power systems to tamper with instruments and measurements. Conventional FDIAs detection approaches are limited to processing the high-dimensional non-Euclidean correlation of grid data. Inspired by the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 73; S. 1 - 11
Hauptverfasser: Feng, Hantong, Han, Yinghua, Si, Fangyuan, Zhao, Qiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!