Detection of False Data Injection Attacks in Cyber-Physical Power Systems: An Adaptive Adversarial Dual Autoencoder With Graph Representation Learning Approach

False data injection attacks (FDIAs) are an important network attack threatening the security of power systems to tamper with instruments and measurements. Conventional FDIAs detection approaches are limited to processing the high-dimensional non-Euclidean correlation of grid data. Inspired by the r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 73; s. 1 - 11
Hlavní autoři: Feng, Hantong, Han, Yinghua, Si, Fangyuan, Zhao, Qiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract False data injection attacks (FDIAs) are an important network attack threatening the security of power systems to tamper with instruments and measurements. Conventional FDIAs detection approaches are limited to processing the high-dimensional non-Euclidean correlation of grid data. Inspired by the recent advances in deep learning, we propose a novel unsupervised method for FDIAs detection by combining the complementary strengths of dual graph-convolutional autoencoder (DAE) and generative adversarial network (GAN). The technique first proposes the design of adversarial DAE to represent the data dimension reasonably in a low dimension. Among them, the application of GAN establishes not only practical constraints for reconstruction but also adds new strong support for the score calculation of the detection model. Second, the proposal of the graph convolutional strengthens the reasonable representation of the non-Euclidean data of the power system. Finally, considering the nonstationarity of power system performance, we use dynamic thresholds to adaptively fit the detection scores obtained by the model to improve the overall performance of the model comprehensively. We verify the effectiveness of our proposed unsupervised algorithm by performing on IEEE 14-bus and IEEE 118-bus systems. Furthermore, robustness tests in different noise environments demonstrate the excellent generality of the algorithm.
AbstractList False data injection attacks (FDIAs) are an important network attack threatening the security of power systems to tamper with instruments and measurements. Conventional FDIAs detection approaches are limited to processing the high-dimensional non-Euclidean correlation of grid data. Inspired by the recent advances in deep learning, we propose a novel unsupervised method for FDIAs detection by combining the complementary strengths of dual graph-convolutional autoencoder (DAE) and generative adversarial network (GAN). The technique first proposes the design of adversarial DAE to represent the data dimension reasonably in a low dimension. Among them, the application of GAN establishes not only practical constraints for reconstruction but also adds new strong support for the score calculation of the detection model. Second, the proposal of the graph convolutional strengthens the reasonable representation of the non-Euclidean data of the power system. Finally, considering the nonstationarity of power system performance, we use dynamic thresholds to adaptively fit the detection scores obtained by the model to improve the overall performance of the model comprehensively. We verify the effectiveness of our proposed unsupervised algorithm by performing on IEEE 14-bus and IEEE 118-bus systems. Furthermore, robustness tests in different noise environments demonstrate the excellent generality of the algorithm.
Author Han, Yinghua
Feng, Hantong
Zhao, Qiang
Si, Fangyuan
Author_xml – sequence: 1
  givenname: Hantong
  orcidid: 0000-0002-8593-9281
  surname: Feng
  fullname: Feng, Hantong
  email: 2072054@stu.neu.edu.cn
  organization: School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
– sequence: 2
  givenname: Yinghua
  orcidid: 0000-0003-3768-2212
  surname: Han
  fullname: Han, Yinghua
  email: yhhan@neuq.edu.cn
  organization: School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
– sequence: 3
  givenname: Fangyuan
  orcidid: 0000-0003-1769-9359
  surname: Si
  fullname: Si, Fangyuan
  email: fysi@bjtu.edu.cn
  organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Qiang
  orcidid: 0000-0003-2004-1769
  surname: Zhao
  fullname: Zhao, Qiang
  email: zhaoqiang@neuq.edu.cn
  organization: School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
BookMark eNp9kc1uEzEURi1UJNLCngULS6wn9d_YY3ajhJZIQVRQxHLk8dwhDqk92E5RnoZXrUOyQCzY2NbVOf6u9F2iCx88IPSakjmlRF_frz7OGWF8zjmnXDfP0IzWtaq0lOwCzQihTaVFLV-gy5S2hBAlhZqh30vIYLMLHocR35hdArw02eCV357nbc7G_kjYebw49BCru80hOWt2-C78goi_HFKGh_QOt4UdzJTdI5THI8RkoivYcl-Odp8DeBuGYnxzeYNvo5k2-DNMERL4bP5krcFE7_x33E5TDMZuXqLn43GpV-f7Cn29eX-_-FCtP92uFu26skyzXCmix0ZbYWpZN6NSgzBgmrEfpYSBkIHTGhrJbM2AGa160LQ2sueKgRL9YPgVenv6t8T-3EPK3Tbsoy-RHdNESMUbIQolT5SNIaUIY2fdafMcjdt1lHTHMrpSRncsozuXUUTyjzhF92Di4X_Km5PiAOAvnFMhGOdP59yZSw
CODEN IEIMAO
CitedBy_id crossref_primary_10_1038_s41598_024_79590_x
crossref_primary_10_1109_TIM_2025_3547467
crossref_primary_10_3390_electronics13101938
crossref_primary_10_1109_TIM_2024_3497062
crossref_primary_10_1109_TIM_2025_3589705
Cites_doi 10.1016/j.chemolab.2015.11.010
10.1109/tim.2022.3216669
10.1109/TSG.2017.2703842
10.1017/S026988891300043X
10.1109/tpwrs.2021.3128633
10.1109/JIOT.2019.2899395
10.3390/s22186789
10.1109/TSG.2018.2870600
10.1016/j.cose.2022.103016
10.1109/TPWRS.2019.2909150
10.1109/TIM.2021.3088491
10.1109/TSG.2015.2495133
10.1109/JIOT.2021.3113900
10.1109/MSP.2012.2235192
10.1109/TCNS.2014.2357531
10.1109/JIOT.2020.2983911
10.1049/iet-cps.2017.0013
10.1109/TIM.2022.3189748
10.1016/j.ijepes.2022.108612
10.1145/2133360.2133363
10.1109/SmartGridComm.2019.8909811
10.1145/1952982.1952995
10.1109/TNNLS.2015.2404803
10.1109/TSG.2020.3014311
10.1109/TIM.2018.2801018
10.1109/TSG.2013.2284438
10.1016/j.epsr.2020.106795
10.1016/j.renene.2021.03.078
10.1109/tnnls.2022.3158654
10.1109/TIM.2019.2939942
10.1201/b18338
10.1109/tsg.2022.3176311
10.1007/11494669_93
10.1109/TIM.2021.3125969
10.1109/TPWRS.2016.2631891
10.1109/TSG.2019.2894334
10.1109/MSP.2013.2245726
10.1109/TII.2021.3063270
10.1109/TPWRS.2020.2988352
10.3389/fenrg.2021.644489
10.1109/TIM.2021.3127649
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3331398
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2023_3331398
10314423
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: N2223001
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: U1908213; 52207112
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hebei Province of China
  grantid: E2022501017
  funderid: 10.13039/501100003787
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-709f89c4a5658f77d4aea8fbf66ed00d315e862c52e2a97be915a6b372e74bda3
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001132683400062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 08:40:18 EDT 2025
Sat Nov 29 04:38:42 EST 2025
Tue Nov 18 22:33:40 EST 2025
Wed Aug 27 02:24:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-709f89c4a5658f77d4aea8fbf66ed00d315e862c52e2a97be915a6b372e74bda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8593-9281
0000-0003-1769-9359
0000-0003-2004-1769
0000-0003-3768-2212
PQID 2904673844
PQPubID 85462
PageCount 11
ParticipantIDs crossref_primary_10_1109_TIM_2023_3331398
ieee_primary_10314423
proquest_journals_2904673844
crossref_citationtrail_10_1109_TIM_2023_3331398
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
Zhao (ref14) 2010; 34
ref36
(ref43) 2023
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
Defferrard (ref38); 29
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref41
ref22
ref44
ref21
Zimmerma (ref42) 2018
ref28
ref27
Hasnat (ref18) 2020
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – volume-title: MATPOWER
  year: 2018
  ident: ref42
– ident: ref45
  doi: 10.1016/j.chemolab.2015.11.010
– ident: ref36
  doi: 10.1109/tim.2022.3216669
– ident: ref21
  doi: 10.1109/TSG.2017.2703842
– ident: ref25
  doi: 10.1017/S026988891300043X
– ident: ref29
  doi: 10.1109/tpwrs.2021.3128633
– ident: ref34
  doi: 10.1109/JIOT.2019.2899395
– ident: ref26
  doi: 10.3390/s22186789
– ident: ref3
  doi: 10.1109/TSG.2018.2870600
– ident: ref40
  doi: 10.1016/j.cose.2022.103016
– ident: ref12
  doi: 10.1109/TPWRS.2019.2909150
– ident: ref2
  doi: 10.1109/TIM.2021.3088491
– volume-title: Load Datamarket and Operational Data(NYISO)[EB/OL]
  year: 2023
  ident: ref43
– ident: ref15
  doi: 10.1109/TSG.2015.2495133
– ident: ref24
  doi: 10.1109/JIOT.2021.3113900
– ident: ref37
  doi: 10.1109/MSP.2012.2235192
– ident: ref17
  doi: 10.1109/TCNS.2014.2357531
– ident: ref23
  doi: 10.1109/JIOT.2020.2983911
– ident: ref19
  doi: 10.1049/iet-cps.2017.0013
– ident: ref32
  doi: 10.1109/TIM.2022.3189748
– ident: ref30
  doi: 10.1016/j.ijepes.2022.108612
– ident: ref44
  doi: 10.1145/2133360.2133363
– ident: ref27
  doi: 10.1109/SmartGridComm.2019.8909811
– ident: ref8
  doi: 10.1145/1952982.1952995
– ident: ref20
  doi: 10.1109/TNNLS.2015.2404803
– ident: ref22
  doi: 10.1109/TSG.2020.3014311
– ident: ref5
  doi: 10.1109/TIM.2018.2801018
– ident: ref16
  doi: 10.1109/TSG.2013.2284438
– ident: ref31
  doi: 10.1016/j.epsr.2020.106795
– ident: ref41
  doi: 10.1016/j.renene.2021.03.078
– ident: ref39
  doi: 10.1109/tnnls.2022.3158654
– ident: ref6
  doi: 10.1109/TIM.2019.2939942
– ident: ref10
  doi: 10.1201/b18338
– year: 2020
  ident: ref18
  article-title: Detection and locating cyber and physical stresses in smart grids using graph signal processing
  publication-title: arXiv:2006.06095
– ident: ref28
  doi: 10.1109/tsg.2022.3176311
– ident: ref46
  doi: 10.1007/11494669_93
– ident: ref1
  doi: 10.1109/TIM.2021.3125969
– ident: ref9
  doi: 10.1109/TPWRS.2016.2631891
– ident: ref11
  doi: 10.1109/TSG.2019.2894334
– ident: ref7
  doi: 10.1109/MSP.2013.2245726
– volume: 29
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref38
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– ident: ref35
  doi: 10.1109/TII.2021.3063270
– ident: ref13
  doi: 10.1109/TPWRS.2020.2988352
– volume: 34
  start-page: 1
  issue: 16
  year: 2010
  ident: ref14
  article-title: Cyber physical power systems: Architecture, implementation techniques and challenges
  publication-title: Autom. Electric Power Syst.
– ident: ref33
  doi: 10.3389/fenrg.2021.644489
– ident: ref4
  doi: 10.1109/TIM.2021.3127649
SSID ssj0007647
Score 2.4765418
Snippet False data injection attacks (FDIAs) are an important network attack threatening the security of power systems to tamper with instruments and measurements....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Adaptive systems
Algorithms
Cyber-physical power systems
Cyber-physical systems
Data models
Deep learning
false data injection attacks (FDIAs)
Feature extraction
generative adversarial network (GAN)
Generative adversarial networks
graph convolutional network
Graph representations
Graphical representations
Machine learning
Power measurement
power system state estimation (PSSE)
Power systems
State estimation
Training
Title Detection of False Data Injection Attacks in Cyber-Physical Power Systems: An Adaptive Adversarial Dual Autoencoder With Graph Representation Learning Approach
URI https://ieeexplore.ieee.org/document/10314423
https://www.proquest.com/docview/2904673844
Volume 73
WOSCitedRecordID wos001132683400062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxQxFH7YomAPVWvFra3k4MXD7GZnMsnE29J1a0HLIhV7G_LjRVdktuxmC_41_qsmmWypiIK3YUhC4Ht5eUne-z6AV4JrZ10sP-PUFowjK3Rj6sJU0ulGRtXVhPR7cXHRXF3JeS5WT7UwiJiSz3AYP9Nbvl2aTbwqG0VJAhb2_x3YEYL3xVq3bldw1hNkjsMKDmHB9k2SytHl-YdhlAkfVlUVIp7mtz0oiar84YnT9jJ79J8Tewz7OY4kkx74J3APuwPYu8MueAAPUnanWT-Fn1P0KeWqI0tHZsHikEyVV-S8-5b_T7yP1fZk0ZHTHxpXxTwDSOZRR41kZvM3ZBLaWnUdvSRJas5rFW2YTDdxOhu_jMyYNvT4vPBfyVnkwyYfU7ptrnLqSOZ0_UImmdD8ED7N3l6eviuyMkNhSln6QlDpGmmYCuFg44SwTKFqnHaco6XUVuMaw1HJ1CWWSgqNclwrritRomDaquoZ7HbLDp8D4ZY5FjwypVgxRbmqG6lqqq00SgszHsBoi1VrMm15VM_43qbjC5VtQLeN6LYZ3QG8vu1x3VN2_KPtYUTzTrseyAEcb-2hzYt63ZaSsiiSytjRX7q9gIdhdNZf0RzDrl9t8ATumxu_WK9eJnv9BXPh6VY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELVgAQEHPpZFFBbwgQuHtG7ixDG3akvZim5VoSL2FvljDEUoXbUuEr-Gv4rHcVeLEEjcosiWLb3xeGzPvEfIK1FpZx2Wn1XMZrwCnunalJkppNO1RNXViPRMzOf1-blcpGL1WAsDADH5DPr4Gd_y7drs8KpsgJIEPOz_18kNlM5K5VqXjldUvKPIHIY1HAKD_askk4Pl9KyPQuH9oihCzFP_tgtFWZU_fHHcYCb3_3NqD8i9FEnSUQf9Q3IN2kNy9wq_4CG5FfM7zfYR-TkGH5OuWrp2dBJsDuhYeUWn7df0f-Q91tvTVUtPfmjYZIsEIV2gkhpN3OZv6Ci0teoC_SSNes5bhVZMxzuczs6vkRvThh6fVv4LfYeM2PRDTLhNdU4tTayun-koUZofkY-Tt8uT0yxpM2Qml7nPBJOuloarEBDWTgjLFajaaVdVYBmzxbCEcFgyZQ65kkKDHJaq0oXIQXBtVfGYHLTrFp4QWlnuePDJjEHBFatUWUtVMm2lUVqYYY8M9lg1JhGXo37GtyYeYJhsAroNotskdHvk9WWPi4604x9tjxDNK-06IHvkeG8PTVrW2yaXjKNMKudP_9LtJbl9ujybNbPp_P0zcieMxLsLm2Ny4Dc7eE5umu9-td28iLb7C76Q7J8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+False+Data+Injection+Attacks+in+Cyber-Physical+Power+Systems%3A+An+Adaptive+Adversarial+Dual+Autoencoder+With+Graph+Representation+Learning+Approach&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Feng%2C+Hantong&rft.au=Han%2C+Yinghua&rft.au=Si%2C+Fangyuan&rft.au=Zhao%2C+Qiang&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2023.3331398&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3331398
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon