Detection of False Data Injection Attacks in Cyber-Physical Power Systems: An Adaptive Adversarial Dual Autoencoder With Graph Representation Learning Approach
False data injection attacks (FDIAs) are an important network attack threatening the security of power systems to tamper with instruments and measurements. Conventional FDIAs detection approaches are limited to processing the high-dimensional non-Euclidean correlation of grid data. Inspired by the r...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on instrumentation and measurement Jg. 73; S. 1 - 11 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | False data injection attacks (FDIAs) are an important network attack threatening the security of power systems to tamper with instruments and measurements. Conventional FDIAs detection approaches are limited to processing the high-dimensional non-Euclidean correlation of grid data. Inspired by the recent advances in deep learning, we propose a novel unsupervised method for FDIAs detection by combining the complementary strengths of dual graph-convolutional autoencoder (DAE) and generative adversarial network (GAN). The technique first proposes the design of adversarial DAE to represent the data dimension reasonably in a low dimension. Among them, the application of GAN establishes not only practical constraints for reconstruction but also adds new strong support for the score calculation of the detection model. Second, the proposal of the graph convolutional strengthens the reasonable representation of the non-Euclidean data of the power system. Finally, considering the nonstationarity of power system performance, we use dynamic thresholds to adaptively fit the detection scores obtained by the model to improve the overall performance of the model comprehensively. We verify the effectiveness of our proposed unsupervised algorithm by performing on IEEE 14-bus and IEEE 118-bus systems. Furthermore, robustness tests in different noise environments demonstrate the excellent generality of the algorithm. |
|---|---|
| AbstractList | False data injection attacks (FDIAs) are an important network attack threatening the security of power systems to tamper with instruments and measurements. Conventional FDIAs detection approaches are limited to processing the high-dimensional non-Euclidean correlation of grid data. Inspired by the recent advances in deep learning, we propose a novel unsupervised method for FDIAs detection by combining the complementary strengths of dual graph-convolutional autoencoder (DAE) and generative adversarial network (GAN). The technique first proposes the design of adversarial DAE to represent the data dimension reasonably in a low dimension. Among them, the application of GAN establishes not only practical constraints for reconstruction but also adds new strong support for the score calculation of the detection model. Second, the proposal of the graph convolutional strengthens the reasonable representation of the non-Euclidean data of the power system. Finally, considering the nonstationarity of power system performance, we use dynamic thresholds to adaptively fit the detection scores obtained by the model to improve the overall performance of the model comprehensively. We verify the effectiveness of our proposed unsupervised algorithm by performing on IEEE 14-bus and IEEE 118-bus systems. Furthermore, robustness tests in different noise environments demonstrate the excellent generality of the algorithm. |
| Author | Han, Yinghua Feng, Hantong Zhao, Qiang Si, Fangyuan |
| Author_xml | – sequence: 1 givenname: Hantong orcidid: 0000-0002-8593-9281 surname: Feng fullname: Feng, Hantong email: 2072054@stu.neu.edu.cn organization: School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China – sequence: 2 givenname: Yinghua orcidid: 0000-0003-3768-2212 surname: Han fullname: Han, Yinghua email: yhhan@neuq.edu.cn organization: School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China – sequence: 3 givenname: Fangyuan orcidid: 0000-0003-1769-9359 surname: Si fullname: Si, Fangyuan email: fysi@bjtu.edu.cn organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing, China – sequence: 4 givenname: Qiang orcidid: 0000-0003-2004-1769 surname: Zhao fullname: Zhao, Qiang email: zhaoqiang@neuq.edu.cn organization: School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China |
| BookMark | eNp9kc1uEzEURi1UJNLCngULS6wn9d_YY3ajhJZIQVRQxHLk8dwhDqk92E5RnoZXrUOyQCzY2NbVOf6u9F2iCx88IPSakjmlRF_frz7OGWF8zjmnXDfP0IzWtaq0lOwCzQihTaVFLV-gy5S2hBAlhZqh30vIYLMLHocR35hdArw02eCV357nbc7G_kjYebw49BCru80hOWt2-C78goi_HFKGh_QOt4UdzJTdI5THI8RkoivYcl-Odp8DeBuGYnxzeYNvo5k2-DNMERL4bP5krcFE7_x33E5TDMZuXqLn43GpV-f7Cn29eX-_-FCtP92uFu26skyzXCmix0ZbYWpZN6NSgzBgmrEfpYSBkIHTGhrJbM2AGa160LQ2sueKgRL9YPgVenv6t8T-3EPK3Tbsoy-RHdNESMUbIQolT5SNIaUIY2fdafMcjdt1lHTHMrpSRncsozuXUUTyjzhF92Di4X_Km5PiAOAvnFMhGOdP59yZSw |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1038_s41598_024_79590_x crossref_primary_10_1109_TIM_2025_3547467 crossref_primary_10_3390_electronics13101938 crossref_primary_10_1109_TIM_2024_3497062 crossref_primary_10_1109_TIM_2025_3589705 |
| Cites_doi | 10.1016/j.chemolab.2015.11.010 10.1109/tim.2022.3216669 10.1109/TSG.2017.2703842 10.1017/S026988891300043X 10.1109/tpwrs.2021.3128633 10.1109/JIOT.2019.2899395 10.3390/s22186789 10.1109/TSG.2018.2870600 10.1016/j.cose.2022.103016 10.1109/TPWRS.2019.2909150 10.1109/TIM.2021.3088491 10.1109/TSG.2015.2495133 10.1109/JIOT.2021.3113900 10.1109/MSP.2012.2235192 10.1109/TCNS.2014.2357531 10.1109/JIOT.2020.2983911 10.1049/iet-cps.2017.0013 10.1109/TIM.2022.3189748 10.1016/j.ijepes.2022.108612 10.1145/2133360.2133363 10.1109/SmartGridComm.2019.8909811 10.1145/1952982.1952995 10.1109/TNNLS.2015.2404803 10.1109/TSG.2020.3014311 10.1109/TIM.2018.2801018 10.1109/TSG.2013.2284438 10.1016/j.epsr.2020.106795 10.1016/j.renene.2021.03.078 10.1109/tnnls.2022.3158654 10.1109/TIM.2019.2939942 10.1201/b18338 10.1109/tsg.2022.3176311 10.1007/11494669_93 10.1109/TIM.2021.3125969 10.1109/TPWRS.2016.2631891 10.1109/TSG.2019.2894334 10.1109/MSP.2013.2245726 10.1109/TII.2021.3063270 10.1109/TPWRS.2020.2988352 10.3389/fenrg.2021.644489 10.1109/TIM.2021.3127649 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2023.3331398 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 11 |
| ExternalDocumentID | 10_1109_TIM_2023_3331398 10314423 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: N2223001 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: U1908213; 52207112 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hebei Province of China grantid: E2022501017 funderid: 10.13039/501100003787 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-709f89c4a5658f77d4aea8fbf66ed00d315e862c52e2a97be915a6b372e74bda3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001132683400062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 08:40:18 EDT 2025 Sat Nov 29 04:38:42 EST 2025 Tue Nov 18 22:33:40 EST 2025 Wed Aug 27 02:24:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-709f89c4a5658f77d4aea8fbf66ed00d315e862c52e2a97be915a6b372e74bda3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8593-9281 0000-0003-1769-9359 0000-0003-2004-1769 0000-0003-3768-2212 |
| PQID | 2904673844 |
| PQPubID | 85462 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2023_3331398 ieee_primary_10314423 proquest_journals_2904673844 crossref_citationtrail_10_1109_TIM_2023_3331398 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 Zhao (ref14) 2010; 34 ref36 (ref43) 2023 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 Defferrard (ref38); 29 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref41 ref22 ref44 ref21 Zimmerma (ref42) 2018 ref28 ref27 Hasnat (ref18) 2020 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – volume-title: MATPOWER year: 2018 ident: ref42 – ident: ref45 doi: 10.1016/j.chemolab.2015.11.010 – ident: ref36 doi: 10.1109/tim.2022.3216669 – ident: ref21 doi: 10.1109/TSG.2017.2703842 – ident: ref25 doi: 10.1017/S026988891300043X – ident: ref29 doi: 10.1109/tpwrs.2021.3128633 – ident: ref34 doi: 10.1109/JIOT.2019.2899395 – ident: ref26 doi: 10.3390/s22186789 – ident: ref3 doi: 10.1109/TSG.2018.2870600 – ident: ref40 doi: 10.1016/j.cose.2022.103016 – ident: ref12 doi: 10.1109/TPWRS.2019.2909150 – ident: ref2 doi: 10.1109/TIM.2021.3088491 – volume-title: Load Datamarket and Operational Data(NYISO)[EB/OL] year: 2023 ident: ref43 – ident: ref15 doi: 10.1109/TSG.2015.2495133 – ident: ref24 doi: 10.1109/JIOT.2021.3113900 – ident: ref37 doi: 10.1109/MSP.2012.2235192 – ident: ref17 doi: 10.1109/TCNS.2014.2357531 – ident: ref23 doi: 10.1109/JIOT.2020.2983911 – ident: ref19 doi: 10.1049/iet-cps.2017.0013 – ident: ref32 doi: 10.1109/TIM.2022.3189748 – ident: ref30 doi: 10.1016/j.ijepes.2022.108612 – ident: ref44 doi: 10.1145/2133360.2133363 – ident: ref27 doi: 10.1109/SmartGridComm.2019.8909811 – ident: ref8 doi: 10.1145/1952982.1952995 – ident: ref20 doi: 10.1109/TNNLS.2015.2404803 – ident: ref22 doi: 10.1109/TSG.2020.3014311 – ident: ref5 doi: 10.1109/TIM.2018.2801018 – ident: ref16 doi: 10.1109/TSG.2013.2284438 – ident: ref31 doi: 10.1016/j.epsr.2020.106795 – ident: ref41 doi: 10.1016/j.renene.2021.03.078 – ident: ref39 doi: 10.1109/tnnls.2022.3158654 – ident: ref6 doi: 10.1109/TIM.2019.2939942 – ident: ref10 doi: 10.1201/b18338 – year: 2020 ident: ref18 article-title: Detection and locating cyber and physical stresses in smart grids using graph signal processing publication-title: arXiv:2006.06095 – ident: ref28 doi: 10.1109/tsg.2022.3176311 – ident: ref46 doi: 10.1007/11494669_93 – ident: ref1 doi: 10.1109/TIM.2021.3125969 – ident: ref9 doi: 10.1109/TPWRS.2016.2631891 – ident: ref11 doi: 10.1109/TSG.2019.2894334 – ident: ref7 doi: 10.1109/MSP.2013.2245726 – volume: 29 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref38 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – ident: ref35 doi: 10.1109/TII.2021.3063270 – ident: ref13 doi: 10.1109/TPWRS.2020.2988352 – volume: 34 start-page: 1 issue: 16 year: 2010 ident: ref14 article-title: Cyber physical power systems: Architecture, implementation techniques and challenges publication-title: Autom. Electric Power Syst. – ident: ref33 doi: 10.3389/fenrg.2021.644489 – ident: ref4 doi: 10.1109/TIM.2021.3127649 |
| SSID | ssj0007647 |
| Score | 2.4765418 |
| Snippet | False data injection attacks (FDIAs) are an important network attack threatening the security of power systems to tamper with instruments and measurements.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Adaptive systems Algorithms Cyber-physical power systems Cyber-physical systems Data models Deep learning false data injection attacks (FDIAs) Feature extraction generative adversarial network (GAN) Generative adversarial networks graph convolutional network Graph representations Graphical representations Machine learning Power measurement power system state estimation (PSSE) Power systems State estimation Training |
| Title | Detection of False Data Injection Attacks in Cyber-Physical Power Systems: An Adaptive Adversarial Dual Autoencoder With Graph Representation Learning Approach |
| URI | https://ieeexplore.ieee.org/document/10314423 https://www.proquest.com/docview/2904673844 |
| Volume | 73 |
| WOSCitedRecordID | wos001132683400062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BaxQxFA62KNhD1Vrp1lZy8OJhdifJ28nE29J1tQfLIhV7GzLJS12R2bKbFfw1_lWTTLZUxIK3YcgLge8leUne-z5CXjOrmEDLCqctL8AxVoQ4WRQAjltrbCQkSWIT8uKivrpS81ysnmphEDEln-Ewfqa3fLs0m3hVNoqSBBD2_x2yI2XVF2vdLruygp4gk4UZHMKC7ZtkqUaX5x-HUSZ8KIQIEU_9xx6URFX-WonT9jJ78p8De0r2cxxJJz3wz8gD7A7I3h12wQPyKGV3mvVz8muKPqVcdXTp6Cx4HNKp9pqed9_y_4n3sdqeLjp69rPFVTHPANJ51FGjmdn8LZ2EtlbfxFWSJjXntY4-TKebOJyNX0ZmTBssviz8V_o-8mHTTyndNlc5dTRzul7TSSY0PySfZ-8uzz4UWZmhMFxxX8hSuVoZ0CEcrJ2UFjTq2rWuqtCWpRVsjOGoZMYcuVayRcXGumqF5CihtVq8ILvdssMjQh24mumx5BoslABtJbTWyLESzlgsB2S0xaoxmbY8qmd8b9LxpVRNQLeJ6DYZ3QF5c2tx01N23NP2MKJ5p10P5ICcbP2hyZN63XBVQhRJBTj-h9lL8jj0Dv0VzQnZ9asNnpKH5odfrFevkr_-BinK6fY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB1BAQEHPkoRgQI-cOGwyfoj6zW3qCE0oo0iFERvK-96DKmqTZU4SPwa_iq216mKEEjcViuPbOmN7bE98x7AG2oU5WhoZrVhmbCUZj5O5pkQlhnTmEBIEsUm5GxWnp2peSpWj7UwiBiTz7AfPuNbvlk123BVNgiSBMLv_zfhVpDOSuVaVwuvLERHkUn9HPaBwe5VMleDxfS0H4TC-5xzH_OUv-1CUVblj7U4bjCTh_85tEfwIEWSZNRB_xhuYLsP96_xC-7DnZjf2WyewM8xuph01ZKVJRPvc0jG2mkybc_T_5Fzod6eLFty9KPGdTZPEJJ5UFIjidv8HRn5tkZfhnWSRD3njQ5eTMbbMJytWwVuTOMtvizdN_IhMGKTTzHhNtU5tSSxun4lo0RpfgCfJ-8XR8dZ0mbIGqaYy2SubKkaoX1AWFopjdCoS1vbokCT54bTIfrDUjNkyLSSNSo61EXNJUMpaqP5U9hrVy0-A2KFLakeSqaFEbkQdcG11siw4LYxmPdgsMOqahJxedDPuKjiASZXlUe3CuhWCd0evL2yuOxIO_7R9iCgea1dB2QPDnf-UKVpvamYykWQSRXi-V_MXsPd48XpSXUynX18Afd8T6K7sDmEPbfe4ku43Xx3y836VfTdX3wj7T8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+False+Data+Injection+Attacks+in+Cyber-Physical+Power+Systems%3A+An+Adaptive+Adversarial+Dual+Autoencoder+With+Graph+Representation+Learning+Approach&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Feng%2C+Hantong&rft.au=Han%2C+Yinghua&rft.au=Si%2C+Fangyuan&rft.au=Zhao%2C+Qiang&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2023.3331398&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3331398 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |