JCNN-Based DD Hybrid Precoding Algorithm With TPSAS Structure for FD-MIMO Systems

This letter presents a joint convolutional neural network (JCNN)-based double dimensional (DD) hybrid precoding algorithm for adaptive fully-connected subarray structure with two-layer shared phase shifters (TPSAS) full-dimensional multiple-input multiple-output (FD-MIMO) systems. Firstly, a TPSAS s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE wireless communications letters Ročník 13; číslo 2; s. 357 - 361
Hlavní autoři: Shi, Baozhu, Liu, Fulai, Du, Ruiyan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-2337, 2162-2345
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This letter presents a joint convolutional neural network (JCNN)-based double dimensional (DD) hybrid precoding algorithm for adaptive fully-connected subarray structure with two-layer shared phase shifters (TPSAS) full-dimensional multiple-input multiple-output (FD-MIMO) systems. Firstly, a TPSAS structure is developed to reduce hardware complexity. Then, a novel JCNN is designed to learn predicting the vectorized hybrid precoder with the vertical phase subnetwork (VpsCNN) and horizontal phase subnetwork (HpsCNN). Furthermore, the JCNN is trained by a label and a two-stage training strategy. In the first stage, minimizing residual between hybrid precoder and the label is adopted to train the JCNN. Specially, two distinct network layers are applied to meet constraints of VpsCNN and HpsCNN, respectively, including unit modulus and custom phase layers. In the second stage, estimated channel matrices are sent into the well-trained JCNN to simultaneously obtain the vertical precoder, horizontal precoder, and digital precoder. The theoretical analyses and simulation results verify that the proposed algorithm better trades off between spectral efficiency and hardware complexity than other algorithms while enhancing energy efficiency obviously.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2023.3329143