Small Sample Fault Diagnosis Based on Intrinsic Characteristic Encouraged Network for Unmanned Aerial Vehicle Sensors
Fault detection and classification (FDC) of industrial sensors are commonly featured with rare fault cases and demanding diagnostic accuracy. Data-driven diagnostic strategies including signal processing and neural networks prove to be more prominent compared to traditional ways. Most data-driven st...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on instrumentation and measurement Jg. 73; S. 1 - 14 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Fault detection and classification (FDC) of industrial sensors are commonly featured with rare fault cases and demanding diagnostic accuracy. Data-driven diagnostic strategies including signal processing and neural networks prove to be more prominent compared to traditional ways. Most data-driven studies on fault diagnosis pay less attention to small sample situations, which potentially erodes the practical application value. In this article, an intrinsic characteristic encouraged network (ICEN) is structured to address the aforementioned problem in the area of unmanned aerial vehicle (UAV) sensor fault diagnosis. The model of UAV sensor output with multiple fault types is realized for the set-up of elaborate small sample datasets. Specifically, gyroscopes and accelerometers are chosen as the subject sensors, and the generated samples are grouped accordingly. The designed ICEN framework incorporates the signal processing algorithm into a boosted encoder-decoder structure to strengthen the feature compactness of samples and achieve the fault diagnosis with limited data. After parameter optimization, the ICEN framework is trained and tested depending on the variety of sensors. Through comparative analysis of both software and hardware platforms, it is demonstrated that the proposed ICEN framework claims higher accuracy and faster speed in the field of FDC of UAV sensors when faced with small sample situations. |
|---|---|
| AbstractList | Fault detection and classification (FDC) of industrial sensors are commonly featured with rare fault cases and demanding diagnostic accuracy. Data-driven diagnostic strategies including signal processing and neural networks prove to be more prominent compared to traditional ways. Most data-driven studies on fault diagnosis pay less attention to small sample situations, which potentially erodes the practical application value. In this article, an intrinsic characteristic encouraged network (ICEN) is structured to address the aforementioned problem in the area of unmanned aerial vehicle (UAV) sensor fault diagnosis. The model of UAV sensor output with multiple fault types is realized for the set-up of elaborate small sample datasets. Specifically, gyroscopes and accelerometers are chosen as the subject sensors, and the generated samples are grouped accordingly. The designed ICEN framework incorporates the signal processing algorithm into a boosted encoder-decoder structure to strengthen the feature compactness of samples and achieve the fault diagnosis with limited data. After parameter optimization, the ICEN framework is trained and tested depending on the variety of sensors. Through comparative analysis of both software and hardware platforms, it is demonstrated that the proposed ICEN framework claims higher accuracy and faster speed in the field of FDC of UAV sensors when faced with small sample situations. |
| Author | Li, Wenling Shang, Weize Wu, Boxuan Liu, Yang Zhao, Chaoyue Song, Jia |
| Author_xml | – sequence: 1 givenname: Jia orcidid: 0000-0002-4019-970X surname: Song fullname: Song, Jia email: songjia@buaa.edu.cn organization: School of Astronautics, Beihang University, Beijing, China – sequence: 2 givenname: Boxuan orcidid: 0009-0008-0479-4887 surname: Wu fullname: Wu, Boxuan email: boxuanwu@buaa.edu.cn organization: School of Astronautics, Beihang University, Beijing, China – sequence: 3 givenname: Chaoyue orcidid: 0009-0009-7377-625X surname: Zhao fullname: Zhao, Chaoyue email: zhaocy@buaa.edu.cn organization: School of Astronautics, Beihang University, Beijing, China – sequence: 4 givenname: Weize orcidid: 0000-0003-0241-7494 surname: Shang fullname: Shang, Weize email: shangwz0918@163.com organization: Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang, China – sequence: 5 givenname: Yang orcidid: 0000-0002-0139-9573 surname: Liu fullname: Liu, Yang email: ylbuaa@163.com organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 6 givenname: Wenling orcidid: 0000-0002-9130-5736 surname: Li fullname: Li, Wenling email: lwlmath@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China |
| BookMark | eNp9kE1PAyEQhonRxFq9e_BA4nnrwO7C7rHWVpv4caj1umFZUOoWKtAY_7009WA8eAImz8vMPCfo0DqrEDonMCIE6qvn-cOIAi1GecFpBfUBGpCy5FnNGD1EAwBSZXVRsmN0EsIKADgr-ABtF2vR93gh1pte4ZnY9hHfGPFqXTABX4ugOuwsntvojQ1G4smb8EJG5U2I6Tm10m29eE3Yo4qfzr9j7Txe2rWwNhXHCRQ9flFvRqYGC2WD8-EUHWnRB3X2cw7RcjZ9ntxl90-388n4PpO0pjFjuqJ5ySEHUFS0JWhNqjZnspWF1HUny1LrdKsY1TVXbUcYq0peiU4x0G2XD9Hl_t-Ndx9bFWKzStPa1LLJCUmWIGc0UWxPSe9C8Eo30kQRjUtLC9M3BJqd4iYpbnaKmx_FKQh_ghtv1sJ__Re52EeMUuoXzqHgRZF_AxU2iow |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_TIM_2025_3580896 crossref_primary_10_1109_JSEN_2025_3543588 crossref_primary_10_1109_TIM_2025_3577831 crossref_primary_10_1016_j_ast_2025_110102 |
| Cites_doi | 10.3390/s19040771 10.1109/TIM.2020.3001659 10.1109/TII.2020.3036159 10.1016/j.enbuild.2021.111817 10.1109/TIE.2020.3028821 10.1109/MAES.2021.3053108 10.1109/TIE.2015.2417501 10.1002/spe.2937 10.1109/TIM.2019.2935576 10.1016/j.ymssp.2019.106587 10.1016/j.isatra.2022.01.014 10.1016/j.engappai.2023.106476 10.1016/j.measurement.2021.110242 10.3390/s130809549 10.1093/jcde/qwac070 10.1155/2023/6608967 10.1016/j.apacoust.2021.108325 10.1016/j.eswa.2016.12.035 10.1109/TAES.2023.3303855 10.1016/j.aci.2018.08.003 10.1109/TIM.2007.907967 10.1016/j.cja.2020.06.024 10.1109/TCSVT.2023.3325672 10.1109/TAES.2022.3213792 10.1016/j.isatra.2021.07.043 10.1109/TIM.2023.3301898 10.3390/s22197355 10.1016/j.paerosci.2012.02.004 10.1109/TIE.2015.2419013 10.1109/78.157290 10.1016/j.measurement.2017.12.015 10.1007/s12652-022-04113-3 10.1109/TNNLS.2019.2951803 10.1016/j.oceaneng.2021.109049 10.1016/j.apacoust.2023.109436 10.1016/j.knosys.2023.110259 10.1109/CVPR.2016.308 10.1109/TR.2021.3075234 10.14569/IJACSA.2022.0130873 10.1016/j.neucom.2020.11.070 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2024.3472809 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TIM_2024_3472809 10704744 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62073020; 62376015; U22B2038 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-6f823570300e2ab50ff18b36cbc4cf9dc55ff4cf862f97ebd1668578ade60fbd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339149600037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:05:30 EDT 2025 Tue Nov 18 21:18:39 EST 2025 Sat Nov 29 04:38:54 EST 2025 Wed Aug 27 02:18:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-6f823570300e2ab50ff18b36cbc4cf9dc55ff4cf862f97ebd1668578ade60fbd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0009-7377-625X 0000-0002-0139-9573 0000-0002-9130-5736 0009-0008-0479-4887 0000-0003-0241-7494 0000-0002-4019-970X |
| PQID | 3118090362 |
| PQPubID | 85462 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_10704744 proquest_journals_3118090362 crossref_citationtrail_10_1109_TIM_2024_3472809 crossref_primary_10_1109_TIM_2024_3472809 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref5 doi: 10.3390/s19040771 – ident: ref17 doi: 10.1109/TIM.2020.3001659 – ident: ref29 doi: 10.1109/TII.2020.3036159 – ident: ref37 doi: 10.1016/j.enbuild.2021.111817 – ident: ref26 doi: 10.1109/TIE.2020.3028821 – ident: ref15 doi: 10.1109/MAES.2021.3053108 – ident: ref3 doi: 10.1109/TIE.2015.2417501 – ident: ref40 doi: 10.1002/spe.2937 – ident: ref19 doi: 10.1109/TIM.2019.2935576 – ident: ref22 doi: 10.1016/j.ymssp.2019.106587 – ident: ref16 doi: 10.1016/j.isatra.2022.01.014 – ident: ref4 doi: 10.1016/j.engappai.2023.106476 – ident: ref36 doi: 10.1016/j.measurement.2021.110242 – ident: ref30 doi: 10.3390/s130809549 – ident: ref2 doi: 10.1093/jcde/qwac070 – ident: ref18 doi: 10.1155/2023/6608967 – ident: ref12 doi: 10.1016/j.apacoust.2021.108325 – ident: ref32 doi: 10.1016/j.eswa.2016.12.035 – ident: ref14 doi: 10.1109/TAES.2023.3303855 – ident: ref31 doi: 10.1016/j.aci.2018.08.003 – ident: ref35 doi: 10.1109/TIM.2007.907967 – ident: ref23 doi: 10.1016/j.cja.2020.06.024 – ident: ref25 doi: 10.1109/TCSVT.2023.3325672 – ident: ref28 doi: 10.1109/TAES.2022.3213792 – ident: ref1 doi: 10.1016/j.isatra.2021.07.043 – ident: ref27 doi: 10.1109/TIM.2023.3301898 – ident: ref11 doi: 10.3390/s22197355 – ident: ref7 doi: 10.1016/j.paerosci.2012.02.004 – ident: ref8 doi: 10.1109/TIE.2015.2419013 – ident: ref34 doi: 10.1109/78.157290 – ident: ref33 doi: 10.1016/j.measurement.2017.12.015 – ident: ref6 doi: 10.1007/s12652-022-04113-3 – ident: ref24 doi: 10.1109/TNNLS.2019.2951803 – ident: ref9 doi: 10.1016/j.oceaneng.2021.109049 – ident: ref13 doi: 10.1016/j.apacoust.2023.109436 – ident: ref20 doi: 10.1016/j.knosys.2023.110259 – ident: ref39 doi: 10.1109/CVPR.2016.308 – ident: ref10 doi: 10.1109/TR.2021.3075234 – ident: ref38 doi: 10.14569/IJACSA.2022.0130873 – ident: ref21 doi: 10.1016/j.neucom.2020.11.070 |
| SSID | ssj0007647 |
| Score | 2.3946774 |
| Snippet | Fault detection and classification (FDC) of industrial sensors are commonly featured with rare fault cases and demanding diagnostic accuracy. Data-driven... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accelerometers Accuracy Algorithms Autonomous aerial vehicles Data models Encoders-Decoders Fault detection Fault diagnosis Gyroscopes gyroscopes and accelerometers Kinematics Navigation neural network Neural networks Sensor phenomena and characterization Sensors Signal processing small samples unmanned aerial vehicle (UAV) Unmanned aerial vehicles |
| Title | Small Sample Fault Diagnosis Based on Intrinsic Characteristic Encouraged Network for Unmanned Aerial Vehicle Sensors |
| URI | https://ieeexplore.ieee.org/document/10704744 https://www.proquest.com/docview/3118090362 |
| Volume | 73 |
| WOSCitedRecordID | wos001339149600037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4CBBI7bFCY6FYmH7hwCKSOE9dH1lENiVWT2iJukWM_a0glRU26v3_PTlqB0JC4-eCXWPr8ftnP3wM4izVKNNpEwqUYCW7jSButIusMhQc6U2kge767lePx4P5e_W4fq4e3MIgYis_wwg_DXb5dmJU_KiMNl7GQQmzDtpSyeay1MbsyEw1BZp80mMKC9Z1krC6nN78oE-TiIhG-G5N64YNCU5VXlji4l9Gndy7sAD62cSS7aoA_hC0sO_DhGbtgB_ZCdaepjmA1edTzOZtoTwXMRno1r9mPpsbuoWLfyZFZtijZTVmTJImw4QsaZ3ZdGvofWR7Lxk3ZOKNYl83KR-3NNLsK25jd4R-_GDah1HixrI5hNrqeDn9Gbb-FyHDF6yhzA09-Q2ofI9dFGjvXHxRJZgojjFPWpKlzNKIkyCmJhe1n2YA0XlvMYlfY5DPslIsST4CJTHtqOzQFR1FwXmguLKVOqBNDNiXpwuUagdy0ZOS-J8Y8D0lJrHLCLPeY5S1mXTjfSDw1RBxvzD32GD2b18DThd4a5bxV1SpPPAme8o78y3_EvsK-_3pz8NKDnXq5wlPYNX_rh2r5LezCfyzA234 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5BCmo5tJSHGgqtD730sGTj9e7GR14RUUOElIC4rbz2WCAlmyq74fcz9m4QCLUSNx88sqXP87LH3wD8ChWmqJUOhI0xENyEgdJKBsZqCg9UImNP9nw7TEej3t2dvG4-q_u_MIjoi8_w2A39W76Z66W7KiMNT0ORCrEOH2IheLf-rvVseNNE1BSZXdJhCgxWr5Kh7EwGV5QLcnEcCdePSb7yQr6tyhtb7B1M_8s7t7YNn5tIkp3U0H-FNSx2YOsFv-AObPr6Tl3uwnI8U9MpGytHBsz6ajmt2HldZfdQslNyZYbNCzYoKpIkEXb2isiZXRSa1iPbY9ioLhxnFO2ym2KmnKFmJ_4gs1u8d5thY0qO54tyD276F5Ozy6DpuBBoLnkVJLbn6G9I8UPkKo9Da7u9PEp0roW20ug4tpZGlAZZmWJuuknSI51XBpPQ5ibah1YxL_AbMJEoR26HOucocs5zxYWh5AlVpMmqRG3orBDIdENH7rpiTDOfloQyI8wyh1nWYNaG388Sf2sqjv_M3XMYvZhXw9OGwxXKWaOsZRY5GjzpXPnBP8R-wsfLydUwGw5Gf77DJ7dSfQ1zCK1qscQj2NCP1UO5-OFP5BO-L97F |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Sample+Fault+Diagnosis+Based+on+Intrinsic+Characteristic+Encouraged+Network+for+Unmanned+Aerial+Vehicle+Sensors&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Song%2C+Jia&rft.au=Wu%2C+Boxuan&rft.au=Zhao%2C+Chaoyue&rft.au=Shang%2C+Weize&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2024.3472809&rft.externalDocID=10704744 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |