Small Sample Fault Diagnosis Based on Intrinsic Characteristic Encouraged Network for Unmanned Aerial Vehicle Sensors

Fault detection and classification (FDC) of industrial sensors are commonly featured with rare fault cases and demanding diagnostic accuracy. Data-driven diagnostic strategies including signal processing and neural networks prove to be more prominent compared to traditional ways. Most data-driven st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 73; S. 1 - 14
Hauptverfasser: Song, Jia, Wu, Boxuan, Zhao, Chaoyue, Shang, Weize, Liu, Yang, Li, Wenling
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fault detection and classification (FDC) of industrial sensors are commonly featured with rare fault cases and demanding diagnostic accuracy. Data-driven diagnostic strategies including signal processing and neural networks prove to be more prominent compared to traditional ways. Most data-driven studies on fault diagnosis pay less attention to small sample situations, which potentially erodes the practical application value. In this article, an intrinsic characteristic encouraged network (ICEN) is structured to address the aforementioned problem in the area of unmanned aerial vehicle (UAV) sensor fault diagnosis. The model of UAV sensor output with multiple fault types is realized for the set-up of elaborate small sample datasets. Specifically, gyroscopes and accelerometers are chosen as the subject sensors, and the generated samples are grouped accordingly. The designed ICEN framework incorporates the signal processing algorithm into a boosted encoder-decoder structure to strengthen the feature compactness of samples and achieve the fault diagnosis with limited data. After parameter optimization, the ICEN framework is trained and tested depending on the variety of sensors. Through comparative analysis of both software and hardware platforms, it is demonstrated that the proposed ICEN framework claims higher accuracy and faster speed in the field of FDC of UAV sensors when faced with small sample situations.
AbstractList Fault detection and classification (FDC) of industrial sensors are commonly featured with rare fault cases and demanding diagnostic accuracy. Data-driven diagnostic strategies including signal processing and neural networks prove to be more prominent compared to traditional ways. Most data-driven studies on fault diagnosis pay less attention to small sample situations, which potentially erodes the practical application value. In this article, an intrinsic characteristic encouraged network (ICEN) is structured to address the aforementioned problem in the area of unmanned aerial vehicle (UAV) sensor fault diagnosis. The model of UAV sensor output with multiple fault types is realized for the set-up of elaborate small sample datasets. Specifically, gyroscopes and accelerometers are chosen as the subject sensors, and the generated samples are grouped accordingly. The designed ICEN framework incorporates the signal processing algorithm into a boosted encoder-decoder structure to strengthen the feature compactness of samples and achieve the fault diagnosis with limited data. After parameter optimization, the ICEN framework is trained and tested depending on the variety of sensors. Through comparative analysis of both software and hardware platforms, it is demonstrated that the proposed ICEN framework claims higher accuracy and faster speed in the field of FDC of UAV sensors when faced with small sample situations.
Author Li, Wenling
Shang, Weize
Wu, Boxuan
Liu, Yang
Zhao, Chaoyue
Song, Jia
Author_xml – sequence: 1
  givenname: Jia
  orcidid: 0000-0002-4019-970X
  surname: Song
  fullname: Song, Jia
  email: songjia@buaa.edu.cn
  organization: School of Astronautics, Beihang University, Beijing, China
– sequence: 2
  givenname: Boxuan
  orcidid: 0009-0008-0479-4887
  surname: Wu
  fullname: Wu, Boxuan
  email: boxuanwu@buaa.edu.cn
  organization: School of Astronautics, Beihang University, Beijing, China
– sequence: 3
  givenname: Chaoyue
  orcidid: 0009-0009-7377-625X
  surname: Zhao
  fullname: Zhao, Chaoyue
  email: zhaocy@buaa.edu.cn
  organization: School of Astronautics, Beihang University, Beijing, China
– sequence: 4
  givenname: Weize
  orcidid: 0000-0003-0241-7494
  surname: Shang
  fullname: Shang, Weize
  email: shangwz0918@163.com
  organization: Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang, China
– sequence: 5
  givenname: Yang
  orcidid: 0000-0002-0139-9573
  surname: Liu
  fullname: Liu, Yang
  email: ylbuaa@163.com
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 6
  givenname: Wenling
  orcidid: 0000-0002-9130-5736
  surname: Li
  fullname: Li, Wenling
  email: lwlmath@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
BookMark eNp9kE1PAyEQhonRxFq9e_BA4nnrwO7C7rHWVpv4caj1umFZUOoWKtAY_7009WA8eAImz8vMPCfo0DqrEDonMCIE6qvn-cOIAi1GecFpBfUBGpCy5FnNGD1EAwBSZXVRsmN0EsIKADgr-ABtF2vR93gh1pte4ZnY9hHfGPFqXTABX4ugOuwsntvojQ1G4smb8EJG5U2I6Tm10m29eE3Yo4qfzr9j7Txe2rWwNhXHCRQ9flFvRqYGC2WD8-EUHWnRB3X2cw7RcjZ9ntxl90-388n4PpO0pjFjuqJ5ySEHUFS0JWhNqjZnspWF1HUny1LrdKsY1TVXbUcYq0peiU4x0G2XD9Hl_t-Ndx9bFWKzStPa1LLJCUmWIGc0UWxPSe9C8Eo30kQRjUtLC9M3BJqd4iYpbnaKmx_FKQh_ghtv1sJ__Re52EeMUuoXzqHgRZF_AxU2iow
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2025_3580896
crossref_primary_10_1109_JSEN_2025_3543588
crossref_primary_10_1109_TIM_2025_3577831
crossref_primary_10_1016_j_ast_2025_110102
Cites_doi 10.3390/s19040771
10.1109/TIM.2020.3001659
10.1109/TII.2020.3036159
10.1016/j.enbuild.2021.111817
10.1109/TIE.2020.3028821
10.1109/MAES.2021.3053108
10.1109/TIE.2015.2417501
10.1002/spe.2937
10.1109/TIM.2019.2935576
10.1016/j.ymssp.2019.106587
10.1016/j.isatra.2022.01.014
10.1016/j.engappai.2023.106476
10.1016/j.measurement.2021.110242
10.3390/s130809549
10.1093/jcde/qwac070
10.1155/2023/6608967
10.1016/j.apacoust.2021.108325
10.1016/j.eswa.2016.12.035
10.1109/TAES.2023.3303855
10.1016/j.aci.2018.08.003
10.1109/TIM.2007.907967
10.1016/j.cja.2020.06.024
10.1109/TCSVT.2023.3325672
10.1109/TAES.2022.3213792
10.1016/j.isatra.2021.07.043
10.1109/TIM.2023.3301898
10.3390/s22197355
10.1016/j.paerosci.2012.02.004
10.1109/TIE.2015.2419013
10.1109/78.157290
10.1016/j.measurement.2017.12.015
10.1007/s12652-022-04113-3
10.1109/TNNLS.2019.2951803
10.1016/j.oceaneng.2021.109049
10.1016/j.apacoust.2023.109436
10.1016/j.knosys.2023.110259
10.1109/CVPR.2016.308
10.1109/TR.2021.3075234
10.14569/IJACSA.2022.0130873
10.1016/j.neucom.2020.11.070
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3472809
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 14
ExternalDocumentID 10_1109_TIM_2024_3472809
10704744
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62073020; 62376015; U22B2038
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-6f823570300e2ab50ff18b36cbc4cf9dc55ff4cf862f97ebd1668578ade60fbd3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339149600037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:05:30 EDT 2025
Tue Nov 18 21:18:39 EST 2025
Sat Nov 29 04:38:54 EST 2025
Wed Aug 27 02:18:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-6f823570300e2ab50ff18b36cbc4cf9dc55ff4cf862f97ebd1668578ade60fbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-7377-625X
0000-0002-0139-9573
0000-0002-9130-5736
0009-0008-0479-4887
0000-0003-0241-7494
0000-0002-4019-970X
PQID 3118090362
PQPubID 85462
PageCount 14
ParticipantIDs ieee_primary_10704744
proquest_journals_3118090362
crossref_citationtrail_10_1109_TIM_2024_3472809
crossref_primary_10_1109_TIM_2024_3472809
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.3390/s19040771
– ident: ref17
  doi: 10.1109/TIM.2020.3001659
– ident: ref29
  doi: 10.1109/TII.2020.3036159
– ident: ref37
  doi: 10.1016/j.enbuild.2021.111817
– ident: ref26
  doi: 10.1109/TIE.2020.3028821
– ident: ref15
  doi: 10.1109/MAES.2021.3053108
– ident: ref3
  doi: 10.1109/TIE.2015.2417501
– ident: ref40
  doi: 10.1002/spe.2937
– ident: ref19
  doi: 10.1109/TIM.2019.2935576
– ident: ref22
  doi: 10.1016/j.ymssp.2019.106587
– ident: ref16
  doi: 10.1016/j.isatra.2022.01.014
– ident: ref4
  doi: 10.1016/j.engappai.2023.106476
– ident: ref36
  doi: 10.1016/j.measurement.2021.110242
– ident: ref30
  doi: 10.3390/s130809549
– ident: ref2
  doi: 10.1093/jcde/qwac070
– ident: ref18
  doi: 10.1155/2023/6608967
– ident: ref12
  doi: 10.1016/j.apacoust.2021.108325
– ident: ref32
  doi: 10.1016/j.eswa.2016.12.035
– ident: ref14
  doi: 10.1109/TAES.2023.3303855
– ident: ref31
  doi: 10.1016/j.aci.2018.08.003
– ident: ref35
  doi: 10.1109/TIM.2007.907967
– ident: ref23
  doi: 10.1016/j.cja.2020.06.024
– ident: ref25
  doi: 10.1109/TCSVT.2023.3325672
– ident: ref28
  doi: 10.1109/TAES.2022.3213792
– ident: ref1
  doi: 10.1016/j.isatra.2021.07.043
– ident: ref27
  doi: 10.1109/TIM.2023.3301898
– ident: ref11
  doi: 10.3390/s22197355
– ident: ref7
  doi: 10.1016/j.paerosci.2012.02.004
– ident: ref8
  doi: 10.1109/TIE.2015.2419013
– ident: ref34
  doi: 10.1109/78.157290
– ident: ref33
  doi: 10.1016/j.measurement.2017.12.015
– ident: ref6
  doi: 10.1007/s12652-022-04113-3
– ident: ref24
  doi: 10.1109/TNNLS.2019.2951803
– ident: ref9
  doi: 10.1016/j.oceaneng.2021.109049
– ident: ref13
  doi: 10.1016/j.apacoust.2023.109436
– ident: ref20
  doi: 10.1016/j.knosys.2023.110259
– ident: ref39
  doi: 10.1109/CVPR.2016.308
– ident: ref10
  doi: 10.1109/TR.2021.3075234
– ident: ref38
  doi: 10.14569/IJACSA.2022.0130873
– ident: ref21
  doi: 10.1016/j.neucom.2020.11.070
SSID ssj0007647
Score 2.3946774
Snippet Fault detection and classification (FDC) of industrial sensors are commonly featured with rare fault cases and demanding diagnostic accuracy. Data-driven...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accelerometers
Accuracy
Algorithms
Autonomous aerial vehicles
Data models
Encoders-Decoders
Fault detection
Fault diagnosis
Gyroscopes
gyroscopes and accelerometers
Kinematics
Navigation
neural network
Neural networks
Sensor phenomena and characterization
Sensors
Signal processing
small samples
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Title Small Sample Fault Diagnosis Based on Intrinsic Characteristic Encouraged Network for Unmanned Aerial Vehicle Sensors
URI https://ieeexplore.ieee.org/document/10704744
https://www.proquest.com/docview/3118090362
Volume 73
WOSCitedRecordID wos001339149600037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4CBBI7bFCY6FYmH7hwCKSOE9dH1lENiVWT2iJukWM_a0glRU26v3_PTlqB0JC4-eCXWPr8ftnP3wM4izVKNNpEwqUYCW7jSButIusMhQc6U2kge767lePx4P5e_W4fq4e3MIgYis_wwg_DXb5dmJU_KiMNl7GQQmzDtpSyeay1MbsyEw1BZp80mMKC9Z1krC6nN78oE-TiIhG-G5N64YNCU5VXlji4l9Gndy7sAD62cSS7aoA_hC0sO_DhGbtgB_ZCdaepjmA1edTzOZtoTwXMRno1r9mPpsbuoWLfyZFZtijZTVmTJImw4QsaZ3ZdGvofWR7Lxk3ZOKNYl83KR-3NNLsK25jd4R-_GDah1HixrI5hNrqeDn9Gbb-FyHDF6yhzA09-Q2ofI9dFGjvXHxRJZgojjFPWpKlzNKIkyCmJhe1n2YA0XlvMYlfY5DPslIsST4CJTHtqOzQFR1FwXmguLKVOqBNDNiXpwuUagdy0ZOS-J8Y8D0lJrHLCLPeY5S1mXTjfSDw1RBxvzD32GD2b18DThd4a5bxV1SpPPAme8o78y3_EvsK-_3pz8NKDnXq5wlPYNX_rh2r5LezCfyzA234
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5BCmo5tJSHGgqtD730sGTj9e7GR14RUUOElIC4rbz2WCAlmyq74fcz9m4QCLUSNx88sqXP87LH3wD8ChWmqJUOhI0xENyEgdJKBsZqCg9UImNP9nw7TEej3t2dvG4-q_u_MIjoi8_w2A39W76Z66W7KiMNT0ORCrEOH2IheLf-rvVseNNE1BSZXdJhCgxWr5Kh7EwGV5QLcnEcCdePSb7yQr6tyhtb7B1M_8s7t7YNn5tIkp3U0H-FNSx2YOsFv-AObPr6Tl3uwnI8U9MpGytHBsz6ajmt2HldZfdQslNyZYbNCzYoKpIkEXb2isiZXRSa1iPbY9ioLhxnFO2ym2KmnKFmJ_4gs1u8d5thY0qO54tyD276F5Ozy6DpuBBoLnkVJLbn6G9I8UPkKo9Da7u9PEp0roW20ug4tpZGlAZZmWJuuknSI51XBpPQ5ibah1YxL_AbMJEoR26HOucocs5zxYWh5AlVpMmqRG3orBDIdENH7rpiTDOfloQyI8wyh1nWYNaG388Sf2sqjv_M3XMYvZhXw9OGwxXKWaOsZRY5GjzpXPnBP8R-wsfLydUwGw5Gf77DJ7dSfQ1zCK1qscQj2NCP1UO5-OFP5BO-L97F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Sample+Fault+Diagnosis+Based+on+Intrinsic+Characteristic+Encouraged+Network+for+Unmanned+Aerial+Vehicle+Sensors&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Song%2C+Jia&rft.au=Wu%2C+Boxuan&rft.au=Zhao%2C+Chaoyue&rft.au=Shang%2C+Weize&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2024.3472809&rft.externalDocID=10704744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon