Fuzzy solution in fuzzy linear programming problems

Conventional mathematical programming problems are to maximize an objective function subject to constraints. In the real decision problems, however, a satisfaction criterion might be more useful than a criterion of maximizing an objective function in making the decision under fuzzy constraints. From...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man, and cybernetics Ročník SMC-14; číslo 2; s. 325 - 328
Hlavní autoři: Tanaka, Hideo, Asai, Kiyoji
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.03.1984
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0018-9472, 2168-2909
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Conventional mathematical programming problems are to maximize an objective function subject to constraints. In the real decision problems, however, a satisfaction criterion might be more useful than a criterion of maximizing an objective function in making the decision under fuzzy constraints. From this point, fuzzy linear programming problems are discussed in which both constraints and objective functions are assumed to be of fuzzy inequalities. The problem is to obtain a fuzzy solution such that the fuzzy inequalities hold. In a fuzzy solution the greatest possibility distribution of decision is determined. Our aim is to find out how fuzzy solution will be possible. This problem can be reduced to the conventional linear programming problem so that this fuzzy linear programming problem can be easily solved by the ordinary algorithms of linear programming.
AbstractList Conventional mathematical programming problems are to maximize an objective function subject to constraints. In the real decision problems, however, a satisfaction criterion might be more useful than a criterion of maximizing an objective function in making the decision under fuzzy constraints. From this point, fuzzy linear programming problems are discussed in which both constraints and objective functions are assumed to be of fuzzy inequalities. The problem is to obtain a fuzzy solution such that the fuzzy inequalities hold. In a fuzzy solution the greatest possibility distribution of decision is determined. Our aim is to find out how fuzzy solution will be possible. This problem can be reduced to the conventional linear programming problem so that this fuzzy linear programming problem can be easily solved by the ordinary algorithms of linear programming.
Author Tanaka, Hideo
Asai, Kiyoji
Author_xml – sequence: 1
  givenname: Hideo
  surname: Tanaka
  fullname: Tanaka, Hideo
  organization: Department of Industrial Engineering, University of Osaka Prefecture, 591 Osaka, Sakai, Mozu-Umemachi 4-804, Japan
– sequence: 2
  givenname: Kiyoji
  surname: Asai
  fullname: Asai, Kiyoji
  organization: Department of Industrial Engineering, University of Osaka Prefecture, 591 Osaka, Sakai, Mozu-Umemachi 4-804, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9067144$$DView record in Pascal Francis
BookMark eNp9kDtPwzAUhS1UJNrCD0AsGVhT_Ejt3BFVFJCKGCiz5fhRGSVOZadD--tJaMvAwHRf5zvSPRM0Cm2wCN0SPCMEw8P6420xI1AWM84IowQu0JgSXuYUMIzQGGNS5lAIeoUmKX31Y1HAfIzYcnc47LPU1rvOtyHzIXM_m9oHq2K2je0mqqbxYTP0VW2bdI0unaqTvTnVKfpcPq0XL_nq_fl18bjKNQXa5dwyQ8HxyhjNQEBlaKGVVqXipCqNNRrMHFwJFBTBla2smAvrOOv1olCWTdH90Xerkla1iypon-Q2-kbFvQTMRf9FLxNHmY5tStE6qX2nhm-6qHwtCZZDRHKISA4RyVNEPUn-kGfv_5i7I-Ottb_68_Ubf011ug
CODEN ISYMAW
CitedBy_id crossref_primary_10_1016_0165_0114_95_00171_9
crossref_primary_10_1007_s12543_013_0159_8
crossref_primary_10_1051_shsconf_20173501131
crossref_primary_10_1007_s00521_018_3404_6
crossref_primary_10_1007_s10479_020_03854_8
crossref_primary_10_1023_A_1008974118527
crossref_primary_10_1080_01969722_2016_1156913
crossref_primary_10_1007_s10489_012_0368_6
crossref_primary_10_1007_s11766_000_0010_y
crossref_primary_10_1016_S0165_0114_98_00453_9
crossref_primary_10_1016_0165_0114_93_90341_E
crossref_primary_10_1016_0165_0114_92_90318_X
crossref_primary_10_1016_j_fss_2014_01_004
crossref_primary_10_1007_s00170_010_2896_8
crossref_primary_10_1016_j_fss_2014_10_005
crossref_primary_10_1006_jema_2001_0563
crossref_primary_10_1016_S0165_0114_98_00355_8
crossref_primary_10_1007_s12543_009_0026_9
crossref_primary_10_4018_joris_2011010105
crossref_primary_10_1016_0165_0114_89_90039_0
crossref_primary_10_1080_00207729808929582
crossref_primary_10_1016_j_knosys_2015_09_020
crossref_primary_10_1002_int_22522
crossref_primary_10_1016_j_ins_2007_05_007
crossref_primary_10_1080_00207548608919718
crossref_primary_10_1186_s13660_018_1812_x
crossref_primary_10_15807_jorsj_44_220
crossref_primary_10_1002__SICI_1099_114X_19990325_23_4_303__AID_ER479_3_0_CO_2_1
crossref_primary_10_1007_s00500_021_06389_7
crossref_primary_10_1016_j_apm_2014_02_024
crossref_primary_10_1016_S0165_0114_98_00463_1
crossref_primary_10_1016_j_eswa_2019_01_041
crossref_primary_10_1016_S0165_0114_96_00270_9
crossref_primary_10_1016_j_asoc_2020_106892
crossref_primary_10_1016_0165_0114_88_90013_9
crossref_primary_10_1080_09911920110118795
crossref_primary_10_1016_0165_0114_93_90271_I
crossref_primary_10_1007_s40314_023_02408_5
crossref_primary_10_1002_int_22130
crossref_primary_10_1016_j_energy_2022_123181
crossref_primary_10_1080_00207729608929235
crossref_primary_10_1016_j_jenvman_2016_02_019
crossref_primary_10_1016_j_eswa_2011_08_047
crossref_primary_10_1016_j_camwa_2007_10_023
crossref_primary_10_1016_j_ins_2013_04_004
crossref_primary_10_1016_j_amc_2005_11_121
crossref_primary_10_1007_s00170_008_1598_y
crossref_primary_10_3233_IFS_152039
crossref_primary_10_3233_JIFS_181541
crossref_primary_10_1016_S0165_0114_98_00449_7
crossref_primary_10_1016_0165_0114_88_90054_1
crossref_primary_10_1007_s00521_012_1167_z
crossref_primary_10_1016_0165_0114_92_90116_L
crossref_primary_10_1109_TSMCA_2003_817032
crossref_primary_10_1016_0020_0255_88_90047_3
crossref_primary_10_1016_0377_2217_95_00052_6
crossref_primary_10_1007_s00500_023_08462_9
ContentType Journal Article
Copyright 1985 INIST-CNRS
Copyright_xml – notice: 1985 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1109/TSMC.1984.6313219
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Applied Sciences
EISSN 2168-2909
EndPage 328
ExternalDocumentID 9067144
10_1109_TSMC_1984_6313219
6313219
Genre orig-research
GroupedDBID -~X
0R~
29I
3EH
4.4
53G
5GY
6IK
85S
AAJGR
AAUPJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
ACNCT
AGQYO
AHBIQ
AI.
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIE
RNS
S10
TN5
VH1
VJK
XJT
AAYXX
CITATION
IQODW
ID FETCH-LOGICAL-c292t-6e3d29f6bddc3979bd24caca8a61b8dedc9d59f8929a10bebe757ef63ddc74ae3
IEDL.DBID RIE
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1109_TSMC_1984_6313219&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9472
IngestDate Wed Apr 02 07:27:30 EDT 2025
Tue Nov 18 22:11:34 EST 2025
Sat Nov 29 04:18:35 EST 2025
Wed Aug 27 02:12:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 2
Keywords Linear programming
Fuzzy decision
Decision theory
Mathematical programming
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-6e3d29f6bddc3979bd24caca8a61b8dedc9d59f8929a10bebe757ef63ddc74ae3
PageCount 4
ParticipantIDs pascalfrancis_primary_9067144
crossref_citationtrail_10_1109_TSMC_1984_6313219
ieee_primary_6313219
crossref_primary_10_1109_TSMC_1984_6313219
PublicationCentury 1900
PublicationDate 1984-March-April
PublicationDateYYYYMMDD 1984-03-01
PublicationDate_xml – month: 03
  year: 1984
  text: 1984-March-April
PublicationDecade 1980
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on systems, man, and cybernetics
PublicationTitleAbbrev T-SMC
PublicationYear 1984
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
SSID ssj0014495
Score 1.2405307
Snippet Conventional mathematical programming problems are to maximize an objective function subject to constraints. In the real decision problems, however, a...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 325
SubjectTerms Aerospace electronics
Applied sciences
Bismuth
Cybernetics
Exact sciences and technology
Fuzzy sets
Learning automata
Linear programming
Mathematical programming
Operational research and scientific management
Operational research. Management science
Optimization
Title Fuzzy solution in fuzzy linear programming problems
URI https://ieeexplore.ieee.org/document/6313219
Volume SMC-14
WOSCitedRecordID wos10_1109_TSMC_1984_6313219&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2168-2909
  dateEnd: 19951231
  omitProxy: false
  ssIdentifier: ssj0014495
  issn: 0018-9472
  databaseCode: RIE
  dateStart: 19710101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsNAcKnFgx7UtopVK3vwoGLqJpvs4yjF4kGLYJXewr4CBU2lD8F-vbvJNrQggrewmR3CzGxmZucFwAWxQqNCxQLFJLMOCmeBQMT6PCTDhApkUFG39vZIBwM2GvHnGripamGMMUXymem6xyKWrydq4a7KbonrM-h6fG5RSsparSpiEMfcTyuwBzimkY9ghojfDl-eel3rXMddj2BDBxVDVVxKpJhZqmTlOIs1HdPf_9_XHYA9b0vCu5L5DVAzeRPsrnUYbIKGP7szeOkbTF-1AO4vlstvuJI6OM5hVqw4k1NMoc_Z-rAYoB84MzsEr_37Ye8h8MMTAhXxaB4Qg3XEMyK1Vi52J3UUK6EEEySUTButuE54xqx5JEIkLS9pQk1GsIWnsTD4CNTzSW6OAcSGSBEKmkipYmOEtL8FYgRSOokxzkgboBU5U-U7i7sBF-9p4WEgnjoOpI4DqSdSG1xXWz7Lthp_AbcctSvAarmzwbPqPbca2MrDye_bTsGOQ17mkZ2B-ny6MB2wrb7m49n0vBCqH3mQyrw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9EBfVB3ab4bR58ULEzbdM0eZThmLgNwSm-lXwVBJ2yD0H_epM2lg1E8K2kl7TcXXq53scP4IRapVGhYoFiklkHhbNAYGp9HprHNBXY4KJu7bGb9vvs6YnfLcBFVQtjjCmSz0zTXRaxfP2mpu5X2SV1fQZdj8-lhJAIl9VaVcyAEO7xCuwWJmnkY5gh5peD-16rad1r0vRLzFmhAlbFJUWKseVLXgJazFiZ9sb_3m8T1v1pEl2V4q_BghnWYW2mx2Adan73jtGpbzF91oC4Pf36-kQ_eoeehygvRtyhU4yQz9p6tSsgDzkz3oKH9vWg1Qk8fEKgIh5NAmpiHfGcSq2Vi95JHREllGCChpJpoxXXCc-ZPSCJEEsrzTRJTU5jS58SYeJtWBy-Dc0OoNhQKUKRJlIqYoyQ9sNAjcBKJySOc7oL-IedmfK9xR3ExUtW-BiYZ04CmZNA5pm0C-fVlPeyscZfxA3H7YqwGj6ck1l1n1sbbPVh7_dpx7DSGfS6Wfemf7sPq-5BZVbZASxORlNzCMvqY_I8Hh0VCvYNK-LOAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+solution+in+fuzzy+linear+programming+problems&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics&rft.au=Tanaka%2C+Hideo&rft.au=Asai%2C+Kiyoji&rft.date=1984-03-01&rft.pub=IEEE&rft.issn=0018-9472&rft.volume=SMC-14&rft.issue=2&rft.spage=325&rft.epage=328&rft_id=info:doi/10.1109%2FTSMC.1984.6313219&rft.externalDocID=6313219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9472&client=summon