A Pareto-Based Hybrid Whale Optimization Algorithm with Tabu Search for Multi-Objective Optimization
Multi-Objective Problems (MOPs) are common real-life problems that can be found in different fields, such as bioinformatics and scheduling. Pareto Optimization (PO) is a popular method for solving MOPs, which optimizes all objectives simultaneously. It provides an effective way to evaluate the quali...
Gespeichert in:
| Veröffentlicht in: | Algorithms Jg. 12; H. 12; S. 261 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
04.12.2019
|
| Schlagworte: | |
| ISSN: | 1999-4893, 1999-4893 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multi-Objective Problems (MOPs) are common real-life problems that can be found in different fields, such as bioinformatics and scheduling. Pareto Optimization (PO) is a popular method for solving MOPs, which optimizes all objectives simultaneously. It provides an effective way to evaluate the quality of multi-objective solutions. Swarm Intelligence (SI) methods are population-based methods that generate multiple solutions to the problem, providing SI methods suitable for MOP solutions. SI methods have certain drawbacks when applied to MOPs, such as swarm leader selection and obtaining evenly distributed solutions over solution space. Whale Optimization Algorithm (WOA) is a recent SI method. In this paper, we propose combining WOA with Tabu Search (TS) for MOPs (MOWOATS). MOWOATS uses TS to store non-dominated solutions in elite lists to guide swarm members, which overcomes the swarm leader selection problem. MOWOATS employs crossover in both intensification and diversification phases to improve diversity of the population. MOWOATS proposes a new diversification step to eliminate the need for local search methods. MOWOATS has been tested over different benchmark multi-objective test functions, such as CEC2009, ZDT, and DTLZ. Results present the efficiency of MOWOATS in finding solutions near Pareto front and evenly distributed over solution space. |
|---|---|
| AbstractList | Multi-Objective Problems (MOPs) are common real-life problems that can be found in different fields, such as bioinformatics and scheduling. Pareto Optimization (PO) is a popular method for solving MOPs, which optimizes all objectives simultaneously. It provides an effective way to evaluate the quality of multi-objective solutions. Swarm Intelligence (SI) methods are population-based methods that generate multiple solutions to the problem, providing SI methods suitable for MOP solutions. SI methods have certain drawbacks when applied to MOPs, such as swarm leader selection and obtaining evenly distributed solutions over solution space. Whale Optimization Algorithm (WOA) is a recent SI method. In this paper, we propose combining WOA with Tabu Search (TS) for MOPs (MOWOATS). MOWOATS uses TS to store non-dominated solutions in elite lists to guide swarm members, which overcomes the swarm leader selection problem. MOWOATS employs crossover in both intensification and diversification phases to improve diversity of the population. MOWOATS proposes a new diversification step to eliminate the need for local search methods. MOWOATS has been tested over different benchmark multi-objective test functions, such as CEC2009, ZDT, and DTLZ. Results present the efficiency of MOWOATS in finding solutions near Pareto front and evenly distributed over solution space. |
| Author | Sewisy, Adel Abu El-Magd AbdelAziz, Amr Mohamed Ghany, Kareem Kamal A. Soliman, Taysir Hassan A. |
| Author_xml | – sequence: 1 givenname: Amr Mohamed orcidid: 0000-0003-2571-4766 surname: AbdelAziz fullname: AbdelAziz, Amr Mohamed – sequence: 2 givenname: Taysir Hassan A. surname: Soliman fullname: Soliman, Taysir Hassan A. – sequence: 3 givenname: Kareem Kamal A. orcidid: 0000-0002-3329-1313 surname: Ghany fullname: Ghany, Kareem Kamal A. – sequence: 4 givenname: Adel Abu El-Magd surname: Sewisy fullname: Sewisy, Adel Abu El-Magd |
| BookMark | eNptkEFLAzEQhYMo2FYP_oOAJw9rk-wm2xxrUStUKljxuCTZWZuy3dQkq9Rf72pFVLzMzOF77zGvj_Yb1wBCJ5Scp6kkQ0UZZYQJuod6VEqZZCOZ7v-4D1E_hBUhgktBe6gc4zvlIbrkQgUo8XSrvS3x41LVgOebaNf2TUXrGjyun5y3cbnGr93EC6VbfA_KmyWunMe3bR1tMtcrMNG-_NYeoYNK1QGOv_YAPVxdLibTZDa_vpmMZ4lhksVECAMU2MhIY3IqqtyUQLNRzpghUioDnFJNskpkWueEG86BE804q_JUsbJMB-h057vx7rmFEIuVa33TRRaMZ1wSKUjeUWc7yngXgoeq2Hi7Vn5bUFJ8lFh8l9ixwz-ssfHzp-iVrf9RvAN2bXVL |
| CitedBy_id | crossref_primary_10_1007_s44443_025_00184_2 crossref_primary_10_1016_j_asoc_2020_106655 crossref_primary_10_3390_computation10030037 crossref_primary_10_1109_ACCESS_2024_3404268 crossref_primary_10_1016_j_neucom_2020_12_065 crossref_primary_10_1016_j_icte_2022_02_003 crossref_primary_10_7717_peerj_cs_416 crossref_primary_10_1007_s12652_023_04636_3 crossref_primary_10_1109_TITS_2025_3557442 crossref_primary_10_1016_j_pnucene_2025_105946 crossref_primary_10_3390_a15100363 crossref_primary_10_1016_j_future_2022_04_007 crossref_primary_10_1016_j_jclepro_2023_138911 |
| Cites_doi | 10.1145/1046456.1046467 10.1145/2742642 10.1002/9780470496916 10.1162/evco.1994.2.3.221 10.1016/0305-0548(86)90048-1 10.1016/j.asoc.2019.105520 10.1109/TEVC.2007.892759 10.1016/j.omega.2012.03.007 10.1016/j.advengsoft.2016.01.008 10.1109/TCYB.2017.2710133 10.1016/j.knosys.2016.03.009 10.1007/s00170-007-1013-0 10.1016/j.eswa.2011.08.157 10.1007/978-3-030-26354-6_9 10.1016/j.eswa.2015.10.039 10.1504/IJHT.2018.090282 10.1109/MCI.2006.1597059 10.1109/TEVC.2004.826067 10.1016/j.future.2018.03.020 10.1002/0471739383 10.1162/EVCO_a_00009 10.1109/ACCESS.2018.2812701 10.1109/4235.996017 10.1109/TENCON.2017.8228329 10.1109/TCYB.2018.2834466 10.1109/CEC.2013.6557783 10.1109/TEVC.2003.810761 10.1016/j.neucom.2017.04.053 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.3390/a12120261 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | 10_3390_a12120261 |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c292t-66ce1e28c9cc716f7cde148722c099ace511b04f64bb705c55e50b252f73a2dd3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505741500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4893 |
| IngestDate | Fri Jul 25 12:08:47 EDT 2025 Sat Nov 29 07:10:55 EST 2025 Tue Nov 18 22:23:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-66ce1e28c9cc716f7cde148722c099ace511b04f64bb705c55e50b252f73a2dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3329-1313 0000-0003-2571-4766 |
| OpenAccessLink | https://www.proquest.com/docview/2545909607?pq-origsite=%requestingapplication% |
| PQID | 2545909607 |
| PQPubID | 2032439 |
| ParticipantIDs | proquest_journals_2545909607 crossref_primary_10_3390_a12120261 crossref_citationtrail_10_3390_a12120261 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-04 |
| PublicationDateYYYYMMDD | 2019-12-04 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Srinivas (ref_9) 1994; 2 Mirjalili (ref_17) 2016; 95 Coello (ref_7) 2006; 1 Pradhan (ref_12) 2012; 39 Deb (ref_10) 2002; 6 Wei (ref_15) 2018; 6 ref_32 Bader (ref_25) 2011; 19 ref_31 ref_19 ref_18 Bosman (ref_33) 2003; 7 Zhu (ref_14) 2017; 47 Zhang (ref_23) 2007; 11 Hua (ref_34) 2018; 49 Liu (ref_2) 2013; 41 Slowik (ref_30) 2008; 37 Freitas (ref_8) 2004; 6 Liu (ref_24) 2016; 101 ref_22 ref_21 ref_20 Acharya (ref_3) 2018; 1 ref_1 Coello (ref_11) 2004; 8 ref_29 Mirjalili (ref_13) 2016; 47 ref_27 ref_26 Mafarja (ref_28) 2017; 260 ref_5 ref_4 Glover (ref_16) 1986; 13 ref_6 |
| References_xml | – volume: 6 start-page: 77 year: 2004 ident: ref_8 article-title: A Critical Review of Multi-Objective Optimization in Data Mining: A Position Paper publication-title: ACM SIGKDD Explor. doi: 10.1145/1046456.1046467 – ident: ref_22 doi: 10.1145/2742642 – ident: ref_32 – ident: ref_5 doi: 10.1002/9780470496916 – volume: 2 start-page: 221 year: 1994 ident: ref_9 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evol. Comput. doi: 10.1162/evco.1994.2.3.221 – volume: 13 start-page: 533 year: 1986 ident: ref_16 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(86)90048-1 – ident: ref_18 doi: 10.1016/j.asoc.2019.105520 – volume: 11 start-page: 712 year: 2007 ident: ref_23 article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition publication-title: Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 41 start-page: 369 year: 2013 ident: ref_2 article-title: Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry publication-title: Omega doi: 10.1016/j.omega.2012.03.007 – volume: 95 start-page: 51 year: 2016 ident: ref_17 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_21 – volume: 47 start-page: 2794 year: 2017 ident: ref_14 article-title: An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2710133 – volume: 101 start-page: 90 year: 2016 ident: ref_24 article-title: A new quantum-behaved particle swarm optimization based on cultural evolution mechanism for multiobjective problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.03.009 – volume: 37 start-page: 657 year: 2008 ident: ref_30 article-title: Multi-objective optimization of surface grinding process with the use of evolutionary algorithm with remembered Pareto set publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-007-1013-0 – volume: 39 start-page: 2956 year: 2012 ident: ref_12 article-title: Solving multiobjective problems using cat swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.08.157 – ident: ref_1 doi: 10.1007/978-3-030-26354-6_9 – ident: ref_4 – ident: ref_31 – volume: 47 start-page: 106 year: 2016 ident: ref_13 article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.039 – volume: 1 start-page: 102 year: 2018 ident: ref_3 article-title: Cancer tissue sample classification using point symmetry-based clustering algorithm publication-title: Int. J. Humanit. Technol. doi: 10.1504/IJHT.2018.090282 – volume: 1 start-page: 28 year: 2006 ident: ref_7 article-title: Evolutionary multi-objective optimization: A historical view of the field publication-title: Comput. Intell. Mag. doi: 10.1109/MCI.2006.1597059 – volume: 8 start-page: 256 year: 2004 ident: ref_11 article-title: Handling multiple objectives with particle swarm optimization publication-title: Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826067 – ident: ref_29 doi: 10.1016/j.future.2018.03.020 – ident: ref_6 doi: 10.1002/0471739383 – volume: 19 start-page: 45 year: 2011 ident: ref_25 article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00009 – volume: 6 start-page: 14710 year: 2018 ident: ref_15 article-title: A Hybrid Multiobjective Particle Swarm Optimization Algorithm Based on R2 Indicator publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2812701 – volume: 6 start-page: 182 year: 2002 ident: ref_10 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: Trans. Evol. Comput. doi: 10.1109/4235.996017 – ident: ref_27 doi: 10.1109/TENCON.2017.8228329 – volume: 49 start-page: 2758 year: 2018 ident: ref_34 article-title: A Clustering-Based Adaptive Evolutionary Algorithm for Multiobjective Optimization with Irregular Pareto Fronts publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2834466 – ident: ref_19 – ident: ref_26 doi: 10.1109/CEC.2013.6557783 – volume: 7 start-page: 174 year: 2003 ident: ref_33 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810761 – volume: 260 start-page: 302 year: 2017 ident: ref_28 article-title: Hybrid Whale Optimization Algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – ident: ref_20 |
| SSID | ssj0065961 |
| Score | 2.2647915 |
| Snippet | Multi-Objective Problems (MOPs) are common real-life problems that can be found in different fields, such as bioinformatics and scheduling. Pareto Optimization... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 261 |
| SubjectTerms | Algorithms Bioinformatics Diversification Genetic algorithms Heuristic Methods Mopping Multiple objective analysis Objectives Optimization algorithms Pareto optimization Population Search methods Solution space Swarm intelligence Tabu search |
| Title | A Pareto-Based Hybrid Whale Optimization Algorithm with Tabu Search for Multi-Objective Optimization |
| URI | https://www.proquest.com/docview/2545909607 |
| Volume | 12 |
| WOSCitedRecordID | wos000505741500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: K7- dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M7S dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58Hbz4Fp9LEA9ewrZp02xPssqKIq5FV9RTaR51Fd1Vtwpe_O1O2lRZEC9ecmhSUjrJzHyTyXwAu3nAY9PyORU-zxGgZJy2FNPUVvrWHldh5MgmRLfburmJExdwG7m0ylonlopaD5WNkTcRyPDY-tti__mFWtYoe7rqKDQmYdpWSfDL1L3LWhNHPI78qppQgNC-meEYZjHHuA0aV8GlXTma_-8XLcCc8yhJu1oCizBhBkswX7M1ELd5l0G3SWIpbYf0AC2XJscf9rIWue6jiSDnqDme3JVM0n68w3mK_hOxUVrSy-QbqdKSCbq4pLyzS8_lQ6Urx95dgaujTu_wmDqOBapYzAoaRcr4hrVUrBRCp1wobRAhCcYU-o6ZMuiQSS_Mo1BKgbLj3HBPMs5yEWRM62AVpgbDgVkDorTUOcNnQnlhZiLpmziItGEGJwm4Woe9-q-nyhUgtzwYjykCESug9FtA67DzPfS5qrrx26CtWi6p23ij9EcoG393b8Is-j4lFYQXbsFU8fpmtmFGvRf3o9cGTB90uslFo4To2J4K2ijXlm0_O9ifnJwlt1_T0Nl6 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VRYILZRU7FgKJi0XixHFyQKhsKioUDkVwC4ntUBBdoAXUn-IbGWcBVULceuCaOIvjl5l5tmcewE7i8ED7NqfC5gkSlIhTXzJFTaVvZXHpernYhKjX_bu74LoEn0UujNlWWdjE1FCrjjRz5PtIZHhg4m1x2H2hRjXKrK4WEhoZLGp68IGUrXdwfoLju8vY2WnjuEpzVQEqWcD61POktjXzZSAlkoVESKWREwjGJEZLkdQYgsSWm3huHAt8W841t2LGWSKciCnl4H3HYMJ1fGH-q5qgheX3eODZWfUixwms_chGv2A4zrDPGzb5qR87K_-3LzALM3nETCoZxOegpNvzUC7UKEhunBZAVci1kezt0CP0zIpUByYZjdw20QWSK7SMrTzllFSeH7Bf_WaLmFlo0ojiN5JtuyYYwpM0J5lexU-ZLxi6dhFuRtLXJRhvd9p6GYhUsUoYHhPSciPtxbYOHE9ppvEhDpcrsFeMcijzAutG5-M5RKJlABF-A2IFtr-bdrOqIr81Wi9wEOaGpRf-gGD179NbMFVtXF6EF-f12hpMY5yXyl5Y7jqM91_f9AZMyvf-Y-91M8UwgftRQ-YLkPswGg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VghAXyip2LAQSF6uJEyfNAaGyVFSFkgMIOIXEdlgEbWkLqL_G1zFuHFAlxI0D18RZHD_Nm3Fm5gFspw4PVMXm1Ld5igFKzGlFMEl1p29pceF6RmzCbzYr19dBWICPvBZGp1XmNnFoqGVb6D3yMgYyPND-tl9OTVpEeFTb77xQrSCl_7TmchoZRBpq8I7hW2-vfoRrvcNY7fji8IQahQEqWMD61POEshWriEAIDBxSX0iF8YHPmEDPKRYK3ZHEclPPTRIf35xzxa2EcZb6TsykdPC-YzCOLrnLijAe1s_Cm5wHPB54dtbLyHECqxzbyBI64hllwFECGLJarfSfv8cMTBtfmlQz8M9CQbXmoJTrVBBjtuZBVkmoxXzb9AA5W5KTgS5TI1f3SI7kHG3msylGJdWnO5xX__6Z6P1pchEnryRLyCbo3JNhtTI9Tx4zlhi5dgEu_2Sui1BstVtqCYiQiUwZHvOF5cbKS2wVOJ5UTOFDHC6WYTdf8UiY1utaAeQpwhBMgyP6AscybH0N7WT9Rn4atJZjIjImpxd9A2Ll99ObMIlIiU7rzcYqTKEDONTDsNw1KPa7r2odJsRb_6HX3TCAJnD715j5BNtzOps |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pareto-Based+Hybrid+Whale+Optimization+Algorithm+with+Tabu+Search+for+Multi-Objective+Optimization&rft.jtitle=Algorithms&rft.au=Amr+Mohamed+AbdelAziz&rft.au=Soliman%2C+Taysir+Hassan+A&rft.au=Ghany%2C+Kareem+Kamal+A&rft.au=Adel+Abu+El-Magd+Sewisy&rft.date=2019-12-04&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=12&rft.issue=12&rft.spage=261&rft_id=info:doi/10.3390%2Fa12120261&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |