Deep Reinforcement Learning for UAV Routing in the Presence of Multiple Charging Stations
Deploying Unmanned Aerial Vehicles (UAVs) for traffic monitoring has been a hotspot given their flexibility and broader view. However, a UAV is usually constrained by battery capacity due to limited payload. On the other hand, the development of wireless charging technology has allowed UAVs to reple...
Uložené v:
| Vydané v: | IEEE transactions on vehicular technology Ročník 72; číslo 5; s. 1 - 15 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9545, 1939-9359 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deploying Unmanned Aerial Vehicles (UAVs) for traffic monitoring has been a hotspot given their flexibility and broader view. However, a UAV is usually constrained by battery capacity due to limited payload. On the other hand, the development of wireless charging technology has allowed UAVs to replenish energy from charging stations. In this paper, we study a UAV routing problem in the presence of multiple charging stations (URPMCS) with the objective of minimizing the total distance traveled by the UAV during traffic monitoring. We present a deep reinforcement learning based method, where a multi-head heterogeneous attention mechanism is designed to facilitate learning a policy that automatically and sequentially constructs the route, while taking the energy consumption into account. In our method, two types of attentions are leveraged to learn the relations between monitoring targets and charging station nodes, adopting an encoder-decoder-like policy network. Moreover, we also employ a curriculum learning strategy to enhance generalization to different numbers of charging stations. Computational results show that our method outperforms conventional algorithms with higher solution quality (except for exact methods such as Gurobi) and shorter runtime in general, and also exhibits strong generalized performance on problem instances with different distributions and sizes. |
|---|---|
| AbstractList | Deploying Unmanned Aerial Vehicles (UAVs) for traffic monitoring has been a hotspot given their flexibility and broader view. However, a UAV is usually constrained by battery capacity due to limited payload. On the other hand, the development of wireless charging technology has allowed UAVs to replenish energy from charging stations. In this paper, we study a UAV routing problem in the presence of multiple charging stations (URPMCS) with the objective of minimizing the total distance traveled by the UAV during traffic monitoring. We present a deep reinforcement learning based method, where a multi-head heterogeneous attention mechanism is designed to facilitate learning a policy that automatically and sequentially constructs the route, while taking the energy consumption into account. In our method, two types of attentions are leveraged to learn the relations between monitoring targets and charging station nodes, adopting an encoder-decoder-like policy network. Moreover, we also employ a curriculum learning strategy to enhance generalization to different numbers of charging stations. Computational results show that our method outperforms conventional algorithms with higher solution quality (except for exact methods such as Gurobi) and shorter runtime in general, and also exhibits strong generalized performance on problem instances with different distributions and sizes. |
| Author | Wu, Guohua Cao, Zhiguang Guo, Hongliang Wu, Yaoxin Fan, Mingfeng Sartoretti, Guillaume Liao, Tianjun |
| Author_xml | – sequence: 1 givenname: Mingfeng orcidid: 0000-0003-4008-5873 surname: Fan fullname: Fan, Mingfeng organization: School of Traffic and Transportation Engineering, Central South University, China – sequence: 2 givenname: Yaoxin surname: Wu fullname: Wu, Yaoxin organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Tianjun surname: Liao fullname: Liao, Tianjun organization: Academy of Military Sciences, China – sequence: 4 givenname: Zhiguang orcidid: 0000-0002-4499-759X surname: Cao fullname: Cao, Zhiguang organization: Institute for Infocomm Research (I2R), ASTAR, Singapore – sequence: 5 givenname: Hongliang orcidid: 0000-0002-9836-3090 surname: Guo fullname: Guo, Hongliang organization: Institute for Infocomm Research (I2R), ASTAR, Singapore – sequence: 6 givenname: Guillaume surname: Sartoretti fullname: Sartoretti, Guillaume organization: Department of Mechanical Engineering, National University of Singapore, Singapore – sequence: 7 givenname: Guohua orcidid: 0000-0003-1552-9620 surname: Wu fullname: Wu, Guohua organization: School of Traffic and Transportation Engineering, Central South University, China |
| BookMark | eNp9kD1PwzAQhi1UJEphZ2CwxJzij8SJx6p8SkWg0lZispxwaV2ldnCcgX9PonRADEynOz3v3ek5RyPrLCB0RcmUUiJvV5vVlBHGppxxJkh6gsZUchlJnsgRGhNCs0gmcXKGzptm37VxLOkYfdwB1HgJxpbOF3AAG_ACtLfGbnE3wuvZBi9dG_reWBx2gN88NGALwK7EL20VTF0Bnu-03_bQe9DBONtcoNNSVw1cHusErR_uV_OnaPH6-DyfLaKCSRaiBBLGhMg1BcJFQXVWchHzPM2Ais9CJCVNZQYlQEpKpnOhQTKS5CQlOZc05xN0M-ytvftqoQlq71pvu5OKZTROYplR1lFioArvmsZDqQozPBq8NpWiRPUaVadR9RrVUWMXJH-CtTcH7b__i1wPEQMAv3BCOoDyH_Fyfv0 |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1038_s41598_025_92916_7 crossref_primary_10_1109_TVT_2025_3556754 crossref_primary_10_3390_electronics13091792 crossref_primary_10_1109_ACCESS_2023_3342320 crossref_primary_10_1016_j_jatrs_2025_100058 crossref_primary_10_3390_math13010027 crossref_primary_10_1016_j_cja_2024_09_005 crossref_primary_10_1016_j_vehcom_2025_100874 crossref_primary_10_1016_j_swevo_2024_101719 crossref_primary_10_1109_TAES_2024_3449795 crossref_primary_10_1109_TASE_2025_3548141 crossref_primary_10_1109_TVT_2024_3377647 crossref_primary_10_1109_TVT_2024_3405022 crossref_primary_10_1016_j_energ_2025_100032 crossref_primary_10_1109_TMC_2025_3551386 crossref_primary_10_3390_math13152427 crossref_primary_10_3390_s23249897 crossref_primary_10_1016_j_comnet_2024_110615 crossref_primary_10_1016_j_eswa_2025_126961 crossref_primary_10_1109_TMC_2024_3384405 crossref_primary_10_1016_j_inffus_2024_102607 |
| Cites_doi | 10.1002/rnc.1722 10.1371/journal.pone.0155176 10.1109/TITS.2021.3056120 10.1109/LWC.2021.3089876 10.1109/TWC.2022.3162749 10.1016/j.cie.2018.05.039 10.1109/JSAC.2021.3088689 10.1109/TVT.2020.3015246 10.1109/JAS.2022.105677 10.1016/j.tre.2011.08.001 10.1016/0167-6377(91)90083-2 10.1109/MCDM.2007.369410 10.1016/j.ifacol.2019.11.231 10.1109/TVT.2017.2751641 10.1016/j.cor.2019.01.001 10.1109/TWC.2019.2902559 10.1016/j.cor.2006.09.013 10.1109/CDC.2008.4739366 10.1109/TNNLS.2022.3159671 10.1016/j.apm.2013.07.002 10.1109/TNNLS.2021.3068828 10.1109/TVT.2021.3102161 10.1007/s00500-015-1970-4 10.1109/TCYB.2021.3111082 10.1109/TASE.2022.3175565 10.1109/LA-CCI47412.2019.9037042 10.1609/aaai.v35i13.17430 10.1109/TASE.2013.2279544 10.1145/2480730.2480733 10.1109/TII.2020.3031409 10.1002/9781118445112.stat05929 10.1007/s10846-012-9778-2 10.1016/j.rser.2015.01.059 10.5711/morj.6.1.5 10.1016/j.cor.2017.04.011 10.1057/palgrave.jors.2601867 10.3390/rs4061573 10.1109/TITS.2020.3042670 10.1007/BF00992696 10.1109/TCOMM.2021.3136563 10.1109/TITS.2020.3030444 10.1109/TVT.2018.2890773 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2022.3232607 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 15 |
| ExternalDocumentID | 10_1109_TVT_2022_3232607 10002321 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities of Central South University grantid: 2022ZZTS0191 – fundername: National Natural Science Foundation of China grantid: 62073341 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAIKC AAJGR AAMNW AASAJ AAWTH ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 3EH 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IFJZH VH1 7SP 8FD AARMG ABAZT FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c292t-5e52266ba1e036c1a8f3643b78e16dc65f1798efee70f2ab6ae9205b070b391b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000991849700016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:21:39 EDT 2025 Sat Nov 29 02:59:05 EST 2025 Tue Nov 18 22:18:16 EST 2025 Tue Nov 25 14:44:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-5e52266ba1e036c1a8f3643b78e16dc65f1798efee70f2ab6ae9205b070b391b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1552-9620 0000-0002-9836-3090 0000-0003-4008-5873 0000-0002-4499-759X |
| PQID | 2814549812 |
| PQPubID | 85454 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TVT_2022_3232607 crossref_primary_10_1109_TVT_2022_3232607 proquest_journals_2814549812 ieee_primary_10002321 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref12 ref15 ref59 ref58 falkner (ref39) 2020 ref53 ref11 ref55 ref10 ref54 ref17 ref19 ref18 kool (ref37) 0 nazari (ref36) 0 ref45 bahdanau (ref34) 0 ref48 puri (ref2) 2005 ref47 ref42 ref41 bello (ref35) 0 kwon (ref13) 0; 33 ref49 ref8 ref7 ref9 ref4 ref3 ref6 devlin (ref51) 0 ref5 ioffe (ref50) 0 ref40 ref31 ref30 ref32 ref1 ref38 hendrycks (ref52) 2016 ref24 narvekar (ref56) 2020; 21 ref23 lu (ref44) 0 ref26 cao (ref16) 0 ref25 ref20 chen (ref43) 0 ref22 vinyals (ref33) 0 ref21 hottung (ref14) 0 ma (ref46) 0 ref28 ref27 ref29 |
| References_xml | – start-page: 11096 year: 0 ident: ref46 article-title: Learning to iteratively solve routing problems with dual-aspect collaborative transformer publication-title: Proc Adv Neural Inf Process Syst – ident: ref19 doi: 10.1002/rnc.1722 – start-page: 1 year: 0 ident: ref34 article-title: Neural machine translation by jointly learning to align and translate publication-title: Proc Int Conf Learn Representations – start-page: 2692 year: 0 ident: ref33 article-title: Pointer networks publication-title: Proc 28th Int Conf Neural Inf Process Syst – ident: ref27 doi: 10.1371/journal.pone.0155176 – volume: 21 start-page: 1 year: 2020 ident: ref56 article-title: Curriculum learning for reinforcement learning domains: A framework and survey publication-title: J Mach Learn Res – start-page: 1 year: 0 ident: ref37 article-title: Attention, learn to solve routing problems publication-title: Proc Int Conf Learn Representations – ident: ref32 doi: 10.1109/TITS.2021.3056120 – start-page: 1 year: 0 ident: ref44 article-title: A learning-based iterative method for solving vehicle routing problems publication-title: Proc Int Conf Learn Representations – ident: ref8 doi: 10.1109/LWC.2021.3089876 – ident: ref7 doi: 10.1109/TWC.2022.3162749 – ident: ref1 doi: 10.1016/j.cie.2018.05.039 – start-page: 4171 year: 0 ident: ref51 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics - Hum Lang Technol – start-page: 1 year: 0 ident: ref35 article-title: Neural combinatorial optimization with reinforcement learning publication-title: Proc Int Conf Learn Representations – ident: ref55 doi: 10.1109/JSAC.2021.3088689 – start-page: 1 year: 0 ident: ref16 article-title: Dan: Decentralized attention-based neural network to solve the minmax multiple traveling salesman problem publication-title: Proc Int Symp Distrib Auton Robot Syst – year: 2016 ident: ref52 article-title: Gaussian error linear units (gelus) – ident: ref10 doi: 10.1109/TVT.2020.3015246 – ident: ref15 doi: 10.1109/JAS.2022.105677 – ident: ref12 doi: 10.1016/j.tre.2011.08.001 – ident: ref49 doi: 10.1016/0167-6377(91)90083-2 – ident: ref28 doi: 10.1109/MCDM.2007.369410 – ident: ref21 doi: 10.1016/j.ifacol.2019.11.231 – ident: ref58 doi: 10.1109/TVT.2017.2751641 – ident: ref17 doi: 10.1016/j.cor.2019.01.001 – ident: ref48 doi: 10.1109/TWC.2019.2902559 – ident: ref18 doi: 10.1016/j.cor.2006.09.013 – ident: ref20 doi: 10.1109/CDC.2008.4739366 – start-page: 9861 year: 0 ident: ref36 article-title: Reinforcement learning for solving the vehicle routing problem publication-title: Proc 32nd Int Conf Neural Inf Process Syst – ident: ref57 doi: 10.1109/TNNLS.2022.3159671 – ident: ref29 doi: 10.1016/j.apm.2013.07.002 – ident: ref45 doi: 10.1109/TNNLS.2021.3068828 – ident: ref5 doi: 10.1109/TVT.2021.3102161 – ident: ref26 doi: 10.1007/s00500-015-1970-4 – ident: ref42 doi: 10.1109/TCYB.2021.3111082 – ident: ref47 doi: 10.1109/TASE.2022.3175565 – ident: ref38 doi: 10.1109/LA-CCI47412.2019.9037042 – ident: ref41 doi: 10.1609/aaai.v35i13.17430 – ident: ref30 doi: 10.1109/TASE.2013.2279544 – ident: ref22 doi: 10.1145/2480730.2480733 – ident: ref40 doi: 10.1109/TII.2020.3031409 – volume: 33 start-page: 21188 year: 0 ident: ref13 article-title: Pomo: Policy optimization with multiple optima for reinforcement learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref54 doi: 10.1002/9781118445112.stat05929 – year: 2020 ident: ref39 article-title: Learning to solve vehicle routing problems with time windows through joint attention – ident: ref25 doi: 10.1007/s10846-012-9778-2 – start-page: 1 year: 0 ident: ref14 article-title: Efficient active search for combinatorial optimization problems publication-title: Proc Int Conf Learn Representations – start-page: 448 year: 0 ident: ref50 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – ident: ref11 doi: 10.1016/j.rser.2015.01.059 – ident: ref23 doi: 10.5711/morj.6.1.5 – ident: ref31 doi: 10.1016/j.cor.2017.04.011 – ident: ref24 doi: 10.1057/palgrave.jors.2601867 – ident: ref9 doi: 10.3390/rs4061573 – ident: ref4 doi: 10.1109/TITS.2020.3042670 – start-page: 1 year: 2005 ident: ref2 article-title: A survey of unmanned aerial vehicles (UAV) for traffic surveillance – ident: ref53 doi: 10.1007/BF00992696 – start-page: 6281 year: 0 ident: ref43 article-title: Learning to perform local rewriting for combinatorial optimization publication-title: Proc 33rd Int Conf Neural Inf Process Syst – ident: ref59 doi: 10.1109/TCOMM.2021.3136563 – ident: ref3 doi: 10.1109/TITS.2020.3030444 – ident: ref6 doi: 10.1109/TVT.2018.2890773 |
| SSID | ssj0014491 |
| Score | 2.5183868 |
| Snippet | Deploying Unmanned Aerial Vehicles (UAVs) for traffic monitoring has been a hotspot given their flexibility and broader view. However, a UAV is usually... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Coders combinatorial optimization problems Deep learning Deep reinforcement learning Electric vehicle charging Encoders-Decoders Energy consumption heuristics Monitoring UAV routing Unmanned aerial vehicles Wireless power transmission |
| Title | Deep Reinforcement Learning for UAV Routing in the Presence of Multiple Charging Stations |
| URI | https://ieeexplore.ieee.org/document/10002321 https://www.proquest.com/docview/2814549812 |
| Volume | 72 |
| WOSCitedRecordID | wos000991849700016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl48dAtTdqmPQ51eHEM3cY8lTR9EUG2sQ__fl_SbAxEwVvbJFDykrz38t77_Qi5FVIoVIsqMKFhAS6KCM_BWAZRAaWRhotMMUc2IXu9dDzO-r5Y3dXCAIBLPoOWfXSx_HKqV_aqrB06eBZbNr4rpayKtTYhgyjy9Hgh7mC0C9YxSZa1B6MBeoKctwSOTixz7JYOcqQqP05ip166R__8sWNy6O1I2qkEf0J2YHJKDrbQBc_I2wPAjL6Aw0bV7hqQejjVd4qf6LAzojYjyL5_TCiagrTvqpE00Kmhzz7XkNqQvOUyoq9V3H5RJ8Pu4-D-KfBMCoHmGV8GMVgzKylUCKixdKhSI9AUKWQKYVLqJDYWtwwMgGSGqyJRkHEWF3geFCILC3FOapPpBC4INTEwbCzTQuuIKVCy5EaYJDUqRedONEh7Pbe59jDjlu3iM3fuBstylEZupZF7aTTI3WbErILY-KNv3c7-Vr9q4hukuZZf7jfhIudpGKH7iybM5S_Drsi-pY-vEhibpLacr-Ca7Omv5cdifuPW1zce-sw9 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBfXgs2K1ag5ePGy7SfZ5LD6oWEvRKvW0ZLMTKUhb-vD3O8mmUhAFb7ubBJZMkpnJzHwfIZciFhLVovQ0076HiyLAczCMvSCHQseai1T6lmwi7naTwSDtuWJ1WwsDADb5DBrm0cbyi7FamKuyJrPwLKZsfD0MAs7Kcq3voEEQOII8hnsYLYNlVNJPm_3XPvqCnDcEjo8Md-yKFrK0Kj_OYqtg7nb_-Wt7ZMdZkrRVin6frMHogGyv4AsekrcbgAl9AouOquxFIHWAqu8UP9GX1is1OUHmfTiiaAzSnq1HUkDHmj66bENqgvKGzYg-l5H7WZW83N32r9ue41LwFE_53AvBGFpRLhmgzlJMJlqgMZLHCbCoUFGoDXIZaIDY11zmkYSU-2GOJ0IuUpaLI1IZjUdwTKgOwcfGIsmVCnwJMi64FjpKtEzQvRM10lzObaYc0Ljhu_jIrMPhpxlKIzPSyJw0auTqe8SkBNn4o2_VzP5Kv3Lia6S-lF_mtuEs4wkL0AFGI-bkl2EXZLPdf-xknfvuwynZMmTyZTpjnVTm0wWckQ31OR_Opud2rX0B6P7PhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+for+UAV+Routing+in+the+Presence+of+Multiple+Charging+Stations&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Fan%2C+Mingfeng&rft.au=Wu%2C+Yaoxin&rft.au=Liao%2C+Tianjun&rft.au=Cao%2C+Zhiguang&rft.date=2023-05-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=72&rft.issue=5&rft.spage=5732&rft.epage=5746&rft_id=info:doi/10.1109%2FTVT.2022.3232607&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2022_3232607 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |