Deep Reinforcement Learning for UAV Routing in the Presence of Multiple Charging Stations

Deploying Unmanned Aerial Vehicles (UAVs) for traffic monitoring has been a hotspot given their flexibility and broader view. However, a UAV is usually constrained by battery capacity due to limited payload. On the other hand, the development of wireless charging technology has allowed UAVs to reple...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on vehicular technology Ročník 72; číslo 5; s. 1 - 15
Hlavní autori: Fan, Mingfeng, Wu, Yaoxin, Liao, Tianjun, Cao, Zhiguang, Guo, Hongliang, Sartoretti, Guillaume, Wu, Guohua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9545, 1939-9359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deploying Unmanned Aerial Vehicles (UAVs) for traffic monitoring has been a hotspot given their flexibility and broader view. However, a UAV is usually constrained by battery capacity due to limited payload. On the other hand, the development of wireless charging technology has allowed UAVs to replenish energy from charging stations. In this paper, we study a UAV routing problem in the presence of multiple charging stations (URPMCS) with the objective of minimizing the total distance traveled by the UAV during traffic monitoring. We present a deep reinforcement learning based method, where a multi-head heterogeneous attention mechanism is designed to facilitate learning a policy that automatically and sequentially constructs the route, while taking the energy consumption into account. In our method, two types of attentions are leveraged to learn the relations between monitoring targets and charging station nodes, adopting an encoder-decoder-like policy network. Moreover, we also employ a curriculum learning strategy to enhance generalization to different numbers of charging stations. Computational results show that our method outperforms conventional algorithms with higher solution quality (except for exact methods such as Gurobi) and shorter runtime in general, and also exhibits strong generalized performance on problem instances with different distributions and sizes.
AbstractList Deploying Unmanned Aerial Vehicles (UAVs) for traffic monitoring has been a hotspot given their flexibility and broader view. However, a UAV is usually constrained by battery capacity due to limited payload. On the other hand, the development of wireless charging technology has allowed UAVs to replenish energy from charging stations. In this paper, we study a UAV routing problem in the presence of multiple charging stations (URPMCS) with the objective of minimizing the total distance traveled by the UAV during traffic monitoring. We present a deep reinforcement learning based method, where a multi-head heterogeneous attention mechanism is designed to facilitate learning a policy that automatically and sequentially constructs the route, while taking the energy consumption into account. In our method, two types of attentions are leveraged to learn the relations between monitoring targets and charging station nodes, adopting an encoder-decoder-like policy network. Moreover, we also employ a curriculum learning strategy to enhance generalization to different numbers of charging stations. Computational results show that our method outperforms conventional algorithms with higher solution quality (except for exact methods such as Gurobi) and shorter runtime in general, and also exhibits strong generalized performance on problem instances with different distributions and sizes.
Author Wu, Guohua
Cao, Zhiguang
Guo, Hongliang
Wu, Yaoxin
Fan, Mingfeng
Sartoretti, Guillaume
Liao, Tianjun
Author_xml – sequence: 1
  givenname: Mingfeng
  orcidid: 0000-0003-4008-5873
  surname: Fan
  fullname: Fan, Mingfeng
  organization: School of Traffic and Transportation Engineering, Central South University, China
– sequence: 2
  givenname: Yaoxin
  surname: Wu
  fullname: Wu, Yaoxin
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Tianjun
  surname: Liao
  fullname: Liao, Tianjun
  organization: Academy of Military Sciences, China
– sequence: 4
  givenname: Zhiguang
  orcidid: 0000-0002-4499-759X
  surname: Cao
  fullname: Cao, Zhiguang
  organization: Institute for Infocomm Research (I2R), ASTAR, Singapore
– sequence: 5
  givenname: Hongliang
  orcidid: 0000-0002-9836-3090
  surname: Guo
  fullname: Guo, Hongliang
  organization: Institute for Infocomm Research (I2R), ASTAR, Singapore
– sequence: 6
  givenname: Guillaume
  surname: Sartoretti
  fullname: Sartoretti, Guillaume
  organization: Department of Mechanical Engineering, National University of Singapore, Singapore
– sequence: 7
  givenname: Guohua
  orcidid: 0000-0003-1552-9620
  surname: Wu
  fullname: Wu, Guohua
  organization: School of Traffic and Transportation Engineering, Central South University, China
BookMark eNp9kD1PwzAQhi1UJEphZ2CwxJzij8SJx6p8SkWg0lZispxwaV2ldnCcgX9PonRADEynOz3v3ek5RyPrLCB0RcmUUiJvV5vVlBHGppxxJkh6gsZUchlJnsgRGhNCs0gmcXKGzptm37VxLOkYfdwB1HgJxpbOF3AAG_ACtLfGbnE3wuvZBi9dG_reWBx2gN88NGALwK7EL20VTF0Bnu-03_bQe9DBONtcoNNSVw1cHusErR_uV_OnaPH6-DyfLaKCSRaiBBLGhMg1BcJFQXVWchHzPM2Ais9CJCVNZQYlQEpKpnOhQTKS5CQlOZc05xN0M-ytvftqoQlq71pvu5OKZTROYplR1lFioArvmsZDqQozPBq8NpWiRPUaVadR9RrVUWMXJH-CtTcH7b__i1wPEQMAv3BCOoDyH_Fyfv0
CODEN ITVTAB
CitedBy_id crossref_primary_10_1038_s41598_025_92916_7
crossref_primary_10_1109_TVT_2025_3556754
crossref_primary_10_3390_electronics13091792
crossref_primary_10_1109_ACCESS_2023_3342320
crossref_primary_10_1016_j_jatrs_2025_100058
crossref_primary_10_3390_math13010027
crossref_primary_10_1016_j_cja_2024_09_005
crossref_primary_10_1016_j_vehcom_2025_100874
crossref_primary_10_1016_j_swevo_2024_101719
crossref_primary_10_1109_TAES_2024_3449795
crossref_primary_10_1109_TASE_2025_3548141
crossref_primary_10_1109_TVT_2024_3377647
crossref_primary_10_1109_TVT_2024_3405022
crossref_primary_10_1016_j_energ_2025_100032
crossref_primary_10_1109_TMC_2025_3551386
crossref_primary_10_3390_math13152427
crossref_primary_10_3390_s23249897
crossref_primary_10_1016_j_comnet_2024_110615
crossref_primary_10_1016_j_eswa_2025_126961
crossref_primary_10_1109_TMC_2024_3384405
crossref_primary_10_1016_j_inffus_2024_102607
Cites_doi 10.1002/rnc.1722
10.1371/journal.pone.0155176
10.1109/TITS.2021.3056120
10.1109/LWC.2021.3089876
10.1109/TWC.2022.3162749
10.1016/j.cie.2018.05.039
10.1109/JSAC.2021.3088689
10.1109/TVT.2020.3015246
10.1109/JAS.2022.105677
10.1016/j.tre.2011.08.001
10.1016/0167-6377(91)90083-2
10.1109/MCDM.2007.369410
10.1016/j.ifacol.2019.11.231
10.1109/TVT.2017.2751641
10.1016/j.cor.2019.01.001
10.1109/TWC.2019.2902559
10.1016/j.cor.2006.09.013
10.1109/CDC.2008.4739366
10.1109/TNNLS.2022.3159671
10.1016/j.apm.2013.07.002
10.1109/TNNLS.2021.3068828
10.1109/TVT.2021.3102161
10.1007/s00500-015-1970-4
10.1109/TCYB.2021.3111082
10.1109/TASE.2022.3175565
10.1109/LA-CCI47412.2019.9037042
10.1609/aaai.v35i13.17430
10.1109/TASE.2013.2279544
10.1145/2480730.2480733
10.1109/TII.2020.3031409
10.1002/9781118445112.stat05929
10.1007/s10846-012-9778-2
10.1016/j.rser.2015.01.059
10.5711/morj.6.1.5
10.1016/j.cor.2017.04.011
10.1057/palgrave.jors.2601867
10.3390/rs4061573
10.1109/TITS.2020.3042670
10.1007/BF00992696
10.1109/TCOMM.2021.3136563
10.1109/TITS.2020.3030444
10.1109/TVT.2018.2890773
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2022.3232607
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 15
ExternalDocumentID 10_1109_TVT_2022_3232607
10002321
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities of Central South University
  grantid: 2022ZZTS0191
– fundername: National Natural Science Foundation of China
  grantid: 62073341
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAIKC
AAJGR
AAMNW
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
VH1
7SP
8FD
AARMG
ABAZT
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-5e52266ba1e036c1a8f3643b78e16dc65f1798efee70f2ab6ae9205b070b391b3
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000991849700016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:21:39 EDT 2025
Sat Nov 29 02:59:05 EST 2025
Tue Nov 18 22:18:16 EST 2025
Tue Nov 25 14:44:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-5e52266ba1e036c1a8f3643b78e16dc65f1798efee70f2ab6ae9205b070b391b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1552-9620
0000-0002-9836-3090
0000-0003-4008-5873
0000-0002-4499-759X
PQID 2814549812
PQPubID 85454
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TVT_2022_3232607
crossref_primary_10_1109_TVT_2022_3232607
proquest_journals_2814549812
ieee_primary_10002321
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref15
ref59
ref58
falkner (ref39) 2020
ref53
ref11
ref55
ref10
ref54
ref17
ref19
ref18
kool (ref37) 0
nazari (ref36) 0
ref45
bahdanau (ref34) 0
ref48
puri (ref2) 2005
ref47
ref42
ref41
bello (ref35) 0
kwon (ref13) 0; 33
ref49
ref8
ref7
ref9
ref4
ref3
ref6
devlin (ref51) 0
ref5
ioffe (ref50) 0
ref40
ref31
ref30
ref32
ref1
ref38
hendrycks (ref52) 2016
ref24
narvekar (ref56) 2020; 21
ref23
lu (ref44) 0
ref26
cao (ref16) 0
ref25
ref20
chen (ref43) 0
ref22
vinyals (ref33) 0
ref21
hottung (ref14) 0
ma (ref46) 0
ref28
ref27
ref29
References_xml – start-page: 11096
  year: 0
  ident: ref46
  article-title: Learning to iteratively solve routing problems with dual-aspect collaborative transformer
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref19
  doi: 10.1002/rnc.1722
– start-page: 1
  year: 0
  ident: ref34
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Proc Int Conf Learn Representations
– start-page: 2692
  year: 0
  ident: ref33
  article-title: Pointer networks
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– ident: ref27
  doi: 10.1371/journal.pone.0155176
– volume: 21
  start-page: 1
  year: 2020
  ident: ref56
  article-title: Curriculum learning for reinforcement learning domains: A framework and survey
  publication-title: J Mach Learn Res
– start-page: 1
  year: 0
  ident: ref37
  article-title: Attention, learn to solve routing problems
  publication-title: Proc Int Conf Learn Representations
– ident: ref32
  doi: 10.1109/TITS.2021.3056120
– start-page: 1
  year: 0
  ident: ref44
  article-title: A learning-based iterative method for solving vehicle routing problems
  publication-title: Proc Int Conf Learn Representations
– ident: ref8
  doi: 10.1109/LWC.2021.3089876
– ident: ref7
  doi: 10.1109/TWC.2022.3162749
– ident: ref1
  doi: 10.1016/j.cie.2018.05.039
– start-page: 4171
  year: 0
  ident: ref51
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
  publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics - Hum Lang Technol
– start-page: 1
  year: 0
  ident: ref35
  article-title: Neural combinatorial optimization with reinforcement learning
  publication-title: Proc Int Conf Learn Representations
– ident: ref55
  doi: 10.1109/JSAC.2021.3088689
– start-page: 1
  year: 0
  ident: ref16
  article-title: Dan: Decentralized attention-based neural network to solve the minmax multiple traveling salesman problem
  publication-title: Proc Int Symp Distrib Auton Robot Syst
– year: 2016
  ident: ref52
  article-title: Gaussian error linear units (gelus)
– ident: ref10
  doi: 10.1109/TVT.2020.3015246
– ident: ref15
  doi: 10.1109/JAS.2022.105677
– ident: ref12
  doi: 10.1016/j.tre.2011.08.001
– ident: ref49
  doi: 10.1016/0167-6377(91)90083-2
– ident: ref28
  doi: 10.1109/MCDM.2007.369410
– ident: ref21
  doi: 10.1016/j.ifacol.2019.11.231
– ident: ref58
  doi: 10.1109/TVT.2017.2751641
– ident: ref17
  doi: 10.1016/j.cor.2019.01.001
– ident: ref48
  doi: 10.1109/TWC.2019.2902559
– ident: ref18
  doi: 10.1016/j.cor.2006.09.013
– ident: ref20
  doi: 10.1109/CDC.2008.4739366
– start-page: 9861
  year: 0
  ident: ref36
  article-title: Reinforcement learning for solving the vehicle routing problem
  publication-title: Proc 32nd Int Conf Neural Inf Process Syst
– ident: ref57
  doi: 10.1109/TNNLS.2022.3159671
– ident: ref29
  doi: 10.1016/j.apm.2013.07.002
– ident: ref45
  doi: 10.1109/TNNLS.2021.3068828
– ident: ref5
  doi: 10.1109/TVT.2021.3102161
– ident: ref26
  doi: 10.1007/s00500-015-1970-4
– ident: ref42
  doi: 10.1109/TCYB.2021.3111082
– ident: ref47
  doi: 10.1109/TASE.2022.3175565
– ident: ref38
  doi: 10.1109/LA-CCI47412.2019.9037042
– ident: ref41
  doi: 10.1609/aaai.v35i13.17430
– ident: ref30
  doi: 10.1109/TASE.2013.2279544
– ident: ref22
  doi: 10.1145/2480730.2480733
– ident: ref40
  doi: 10.1109/TII.2020.3031409
– volume: 33
  start-page: 21188
  year: 0
  ident: ref13
  article-title: Pomo: Policy optimization with multiple optima for reinforcement learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref54
  doi: 10.1002/9781118445112.stat05929
– year: 2020
  ident: ref39
  article-title: Learning to solve vehicle routing problems with time windows through joint attention
– ident: ref25
  doi: 10.1007/s10846-012-9778-2
– start-page: 1
  year: 0
  ident: ref14
  article-title: Efficient active search for combinatorial optimization problems
  publication-title: Proc Int Conf Learn Representations
– start-page: 448
  year: 0
  ident: ref50
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– ident: ref11
  doi: 10.1016/j.rser.2015.01.059
– ident: ref23
  doi: 10.5711/morj.6.1.5
– ident: ref31
  doi: 10.1016/j.cor.2017.04.011
– ident: ref24
  doi: 10.1057/palgrave.jors.2601867
– ident: ref9
  doi: 10.3390/rs4061573
– ident: ref4
  doi: 10.1109/TITS.2020.3042670
– start-page: 1
  year: 2005
  ident: ref2
  article-title: A survey of unmanned aerial vehicles (UAV) for traffic surveillance
– ident: ref53
  doi: 10.1007/BF00992696
– start-page: 6281
  year: 0
  ident: ref43
  article-title: Learning to perform local rewriting for combinatorial optimization
  publication-title: Proc 33rd Int Conf Neural Inf Process Syst
– ident: ref59
  doi: 10.1109/TCOMM.2021.3136563
– ident: ref3
  doi: 10.1109/TITS.2020.3030444
– ident: ref6
  doi: 10.1109/TVT.2018.2890773
SSID ssj0014491
Score 2.5183868
Snippet Deploying Unmanned Aerial Vehicles (UAVs) for traffic monitoring has been a hotspot given their flexibility and broader view. However, a UAV is usually...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Coders
combinatorial optimization problems
Deep learning
Deep reinforcement learning
Electric vehicle charging
Encoders-Decoders
Energy consumption
heuristics
Monitoring
UAV routing
Unmanned aerial vehicles
Wireless power transmission
Title Deep Reinforcement Learning for UAV Routing in the Presence of Multiple Charging Stations
URI https://ieeexplore.ieee.org/document/10002321
https://www.proquest.com/docview/2814549812
Volume 72
WOSCitedRecordID wos000991849700016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl48dAtTdqmPQ51eHEM3cY8lTR9EUG2sQ__fl_SbAxEwVvbJFDykrz38t77_Qi5FVIoVIsqMKFhAS6KCM_BWAZRAaWRhotMMUc2IXu9dDzO-r5Y3dXCAIBLPoOWfXSx_HKqV_aqrB06eBZbNr4rpayKtTYhgyjy9Hgh7mC0C9YxSZa1B6MBeoKctwSOTixz7JYOcqQqP05ip166R__8sWNy6O1I2qkEf0J2YHJKDrbQBc_I2wPAjL6Aw0bV7hqQejjVd4qf6LAzojYjyL5_TCiagrTvqpE00Kmhzz7XkNqQvOUyoq9V3H5RJ8Pu4-D-KfBMCoHmGV8GMVgzKylUCKixdKhSI9AUKWQKYVLqJDYWtwwMgGSGqyJRkHEWF3geFCILC3FOapPpBC4INTEwbCzTQuuIKVCy5EaYJDUqRedONEh7Pbe59jDjlu3iM3fuBstylEZupZF7aTTI3WbErILY-KNv3c7-Vr9q4hukuZZf7jfhIudpGKH7iybM5S_Drsi-pY-vEhibpLacr-Ca7Omv5cdifuPW1zce-sw9
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBfXgs2K1ag5ePGy7SfZ5LD6oWEvRKvW0ZLMTKUhb-vD3O8mmUhAFb7ubBJZMkpnJzHwfIZciFhLVovQ0076HiyLAczCMvSCHQseai1T6lmwi7naTwSDtuWJ1WwsDADb5DBrm0cbyi7FamKuyJrPwLKZsfD0MAs7Kcq3voEEQOII8hnsYLYNlVNJPm_3XPvqCnDcEjo8Md-yKFrK0Kj_OYqtg7nb_-Wt7ZMdZkrRVin6frMHogGyv4AsekrcbgAl9AouOquxFIHWAqu8UP9GX1is1OUHmfTiiaAzSnq1HUkDHmj66bENqgvKGzYg-l5H7WZW83N32r9ue41LwFE_53AvBGFpRLhmgzlJMJlqgMZLHCbCoUFGoDXIZaIDY11zmkYSU-2GOJ0IuUpaLI1IZjUdwTKgOwcfGIsmVCnwJMi64FjpKtEzQvRM10lzObaYc0Ljhu_jIrMPhpxlKIzPSyJw0auTqe8SkBNn4o2_VzP5Kv3Lia6S-lF_mtuEs4wkL0AFGI-bkl2EXZLPdf-xknfvuwynZMmTyZTpjnVTm0wWckQ31OR_Opud2rX0B6P7PhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+for+UAV+Routing+in+the+Presence+of+Multiple+Charging+Stations&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Fan%2C+Mingfeng&rft.au=Wu%2C+Yaoxin&rft.au=Liao%2C+Tianjun&rft.au=Cao%2C+Zhiguang&rft.date=2023-05-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=72&rft.issue=5&rft.spage=5732&rft.epage=5746&rft_id=info:doi/10.1109%2FTVT.2022.3232607&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2022_3232607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon